re-organize file storage structure, and add API related files, just framework

This commit is contained in:
2024-06-19 15:20:43 +08:00
parent c3dbb2cff0
commit 284dabee76
9 changed files with 209 additions and 58 deletions

View File

@ -0,0 +1,375 @@
from openpyxl import load_workbook
from os import scandir
from os.path import exists
from sys import argv
from pandas import read_csv, concat, set_option
from re import match
from threading import Thread
from time import sleep
from csv import reader
class GetThreadResult(Thread):
def __init__(self, func, args=()):
super(GetThreadResult, self).__init__()
self.func = func
self.args = args
self.result = 0
def run(self):
sleep(1)
self.result = self.func(*self.args)
def get_result(self):
Thread.join(self) # 等待线程执行完毕
try:
return self.result
except Exception as Err:
return None
def w2t_local(msg, wait, w2t):
while True:
global stop
if stop == 0 and wait != 0:
sleep(1)
w2t(msg, wait, 0, 'orange')
else:
break
def traversal_files(path, w2t):
# 功能:以列表的形式分别返回指定路径下的文件和文件夹,不包含子目录
# 参数:路径
# 返回值:路径下的文件夹列表 路径下的文件列表
if not exists(path):
msg = f'数据文件夹{path}不存在,请确认后重试......'
w2t(msg, 0, 8, 'red')
else:
dirs = []
files = []
for item in scandir(path):
if item.is_dir():
dirs.append(item.path)
elif item.is_file():
files.append(item.path)
return dirs, files
def initialization(path, sub, w2t):
_, data_files = traversal_files(path, w2t)
count = 0
for data_file in data_files:
filename = data_file.split('\\')[-1]
if sub != 'cycle':
if not (match('j[1-7].*\\.data', filename) or match('j[1-7].*\\.csv', filename)):
msg = f"所有文件必须以 jx_ 开头,以 .data/csv 结尾x取值1-7请检查后重新运行。"
w2t(msg, 0, 6, 'red')
else:
if filename.endswith('.xlsx'):
count += 1
elif not (match('j[1-7].*\\.data', filename) or match('j[1-7].*\\.csv', filename)):
msg = f"所有文件必须以 jx_ 开头,以 .data/csv 结尾x取值1-7请检查后重新运行。"
w2t(msg, 0, 7, 'red')
if sub == 'cycle' and count != 1:
w2t("未找到电机电流数据处理excel表格确认后重新运行", 0, 5, 'red')
return data_files
def current_max(data_files, rcs, trqh, w2t):
current = {1: [], 2: [], 3: [], 4: [], 5: [], 6: [], 7: []}
for data_file in data_files:
if data_file.endswith('.data'):
df = read_csv(data_file, sep='\t')
elif data_file.endswith('.csv'):
df = read_csv(data_file, sep=',', encoding='gbk', header=8)
axis = int(data_file.split('\\')[-1].split('_')[0].removeprefix('j'))
rca = rcs[axis-1]
col = df.columns.values[trqh-1]
c_max = df[col].max()
scale = 1 if data_file.endswith('.csv') else 1000
_ = abs(c_max/scale*rca)
current[axis].append(_)
w2t(f"{data_file}: {_:.4f}")
for axis, cur in current.items():
if not cur:
continue
else:
w2t(f"{axis}轴数据:", 1, 0, 'purple')
for value in cur:
w2t(f"{value:.4f} ", 1, 0, 'purple')
w2t('')
w2t("\n【MAX】数据处理完毕......")
return current
def current_avg(data_files, rcs, trqh, w2t):
current = {1: [], 2: [], 3: [], 4: [], 5: [], 6: [], 7: []}
for data_file in data_files:
if data_file.endswith('.data'):
df = read_csv(data_file, sep='\t')
elif data_file.endswith('.csv'):
df = read_csv(data_file, sep=',', encoding='gbk', header=8)
axis = int(data_file.split('\\')[-1].split('_')[0].removeprefix('j'))
rca = rcs[axis-1]
col = df.columns.values[trqh - 1]
c_std = df[col].std()
c_avg = df[col].mean()
scale = 1 if data_file.endswith('.csv') else 1000
_ = (abs(c_avg)+c_std)/scale*rca
current[axis].append(_)
w2t(f"{data_file}: {_:.4f}")
for axis, cur in current.items():
if not cur:
continue
else:
w2t(f"{axis}轴数据:", 1, 0, 'purple')
for value in cur:
w2t(f"{value:.4f} ", 1, 0, 'purple')
w2t('')
w2t("\n【AVG】数据处理完毕......")
return current
def current_cycle(dur, data_files, rcs, vel, trq, trqh, rpm, w2t):
result = None
hold = []
single = []
for data_file in data_files:
filename = data_file.split('\\')[-1]
if data_file.endswith('.xlsx'):
result = data_file
elif match('j[1-7]_hold_.*\\.data', filename) or match('j[1-7]_hold_.*\\.csv', filename):
hold.append(data_file)
else:
single.append(data_file)
w2t(f"正在打开文件 {result},需要 10s 左右", 1, 0, 'orange')
global stop
stop = 0
t_excel = GetThreadResult(load_workbook, args=(result, ))
t_wait = Thread(target=w2t_local, args=('.', 1, w2t))
t_excel.start()
t_wait.start()
t_excel.join()
wb = t_excel.get_result()
stop = 1
sleep(1.1)
w2t('')
if hold != []:
avg = current_avg(hold, rcs, trqh, w2t)
for axis, cur_value in avg.items():
try:
shtname = f"J{axis}"
wb[shtname]["J4"].value = float(cur_value)
except:
pass
if dur == 0:
p_single(wb, single, vel, trq, rpm, w2t)
else:
p_scenario(wb, single, vel, trq, rpm, dur, w2t)
w2t(f"正在保存文件 {result},需要 10s 左右", 1, 0, 'orange')
stop = 0
t_excel = Thread(target=wb.save, args=(result, ))
t_wait = Thread(target=w2t_local, args=('.', 1, w2t))
t_excel.start()
t_wait.start()
t_excel.join()
stop = 1
sleep(1.1)
w2t('\n')
w2t("----------------------------------------------------------")
w2t("全部处理完毕")
def find_point(data_file, pos, flag, df, _row_s, _row_e, w2t, exitcode, threshold, step, end_point):
if flag == 'lt':
while _row_e > end_point:
speed_avg = df.iloc[_row_s:_row_e, 0].abs().mean()
if speed_avg < threshold:
_row_e -= step
_row_s -= step
continue
else:
return _row_s, _row_e
else:
w2t(f"[{pos}] {data_file}数据有误,需要检查,无法找到第{exitcode}个有效点...", 0, exitcode, 'red')
elif flag == 'gt':
while _row_e > end_point:
speed_avg = df.iloc[_row_s:_row_e, 0].abs().mean()
if speed_avg > threshold:
_row_e -= step
_row_s -= step
continue
else:
return _row_s, _row_e
else:
w2t(f"[{pos}] {data_file}数据有误,需要检查,无法找到有效起始点或结束点...", 0, exitcode, 'red')
def p_single(wb, single, vel, trq, rpm, w2t):
# 1. 先找到第一个速度为零的点,数据从后往前找,一开始就是零的情况不予考虑
# 2. 记录第一个点的位置,继续向前查找第二个速度为零的点,同理,一开始为零的点不予考虑
# 3. 记录第二个点的位置,并将其中的数据拷贝至对应位置
for data_file in single:
rpm = 1 if rpm == 0 else rpm
scale = 1000 if data_file.endswith('.csv') else 1
axis = int(data_file.split('\\')[-1].split('_')[0].removeprefix('j'))
shtname = f"J{axis}"
ws = wb[shtname]
addition = 1
set_option("display.precision", 2)
if data_file.endswith('.data'):
df = read_csv(data_file, sep='\t')
rr = float(wb['统计'].cell(row=2, column=axis+1).value)
addition = 180 / 3.1415926 * 60 / 360 * rr
elif data_file.endswith('.csv'):
df = read_csv(data_file, sep=',', encoding='gbk', header=8)
csv_reader = reader(open(data_file))
i = 0
cycle = 0.001
for row in csv_reader:
i += 1
if i == 3:
cycle = float(row[0].split(':')[1].split('ms')[0]) / 1000
break
ws["H11"] = cycle
col_names = list(df.columns)
df_1 = df[col_names[vel-1]].multiply(rpm*addition)
df_2 = df[col_names[trq-1]].multiply(scale)
df = concat([df_1, df_2], axis=1)
_step = 5 if data_file.endswith('.csv') else 50
_end_point = 30 if data_file.endswith('.csv') else 200
_adjust = 0 if data_file.endswith('.csv') else 150
_row_e = df.index[-1]
_row_s = _row_e - _end_point
speed_avg = df.iloc[_row_s:_row_e, 0].abs().mean()
if speed_avg < 2:
# 过滤尾部为零无效数据
_row_s, _row_e = find_point(data_file, 'a1', 'lt', df, _row_s, _row_e, w2t, 1, threshold=5, step=_step, end_point=_end_point)
# 找到第一个起始点 row_end继续找到有数据的部分后面有一段有效数据区
row_end = _row_e - _adjust
_row_e -= _end_point
_row_s -= _end_point
_row_s, _row_e = find_point(data_file, 'a2', 'gt', df, _row_s, _row_e, w2t, 3, threshold=5, step=_step, end_point=_end_point)
# 速度已经快要降为零了,继续寻找下一个速度上升点
_row_e -= _end_point
_row_s -= _end_point
_row_s, _row_e = find_point(data_file, 'a3', 'lt', df, _row_s, _row_e, w2t, 3, threshold=5, step=_step, end_point=_end_point)
elif speed_avg > 2:
# 过滤尾部非零无效数据
_row_s, _row_e = find_point(data_file, 'b1', 'gt', df, _row_s, _row_e, w2t, 2, threshold=5, step=_step, end_point=_end_point)
# 找到第一个起始点 row_end继续找到有数据的部分后面有一段零数据区
row_end = _row_e - _adjust
_row_e -= _end_point
_row_s -= _end_point
_row_s, _row_e = find_point(data_file, 'b2', 'lt', df, _row_s, _row_e, w2t, 4, threshold=5, step=_step, end_point=_end_point)
# 目前已经有一点的速度值了,继续往前搜寻下一个速度为零的点
_row_e -= _end_point
_row_s -= _end_point
_row_s, _row_e = find_point(data_file, 'b3', 'gt', df, _row_s, _row_e, w2t, 4, threshold=5, step=_step, end_point=_end_point)
row_start = _row_s + _adjust
data = []
for row in range(row_start, row_end):
data.append(df.iloc[row, 0])
data.append(df.iloc[row, 1])
i = 0
for row in ws.iter_rows(min_row=2, min_col=2, max_row=70000, max_col=3):
for cell in row:
try:
_ = f"{data[i]:.2f}"
cell.value = float(_)
i += 1
except:
cell.value = None
def p_scenario(wb, single, vel, trq, rpm, dur, w2t):
for data_file in single:
cycle = 0.001
rpm = 1 if rpm == 0 else rpm
scale = 1000 if data_file.endswith('.csv') else 1
axis = int(data_file.split('\\')[-1].split('_')[0].removeprefix('j'))
shtname = f"J{axis}"
ws = wb[shtname]
addition = 1
set_option("display.precision", 2)
if data_file.endswith('.data'):
df = read_csv(data_file, sep='\t')
rr = float(wb['统计'].cell(row=2, column=axis+1).value)
addition = 180 / 3.1415926 * 60 / 360 * rr
elif data_file.endswith('.csv'):
df = read_csv(data_file, sep=',', encoding='gbk', header=8)
csv_reader = reader(open(data_file))
i = 0
for row in csv_reader:
i += 1
if i == 3:
cycle = float(row[0].split(':')[1].split('ms')[0]) / 1000
break
ws["H11"] = cycle
col_names = list(df.columns)
df_1 = df[col_names[vel-1]].multiply(rpm*addition)
df_2 = df[col_names[trq-1]].multiply(scale)
df = concat([df_1, df_2], axis=1)
row_start = 300
row_end = row_start + int(dur/cycle)
if row_end > df.index[-1]:
w2t(f"位置超限:{data_file} 共有 {df.index[-1]} 条数据,无法取到第 {row_end} 条数据,需要确认场景周期时间...", 0, 9, 'red')
data = []
for row in range(row_start, row_end):
data.append(df.iloc[row, 0])
data.append(df.iloc[row, 1])
i = 0
for row in ws.iter_rows(min_row=2, min_col=2, max_row=70000, max_col=3):
for cell in row:
try:
_ = f"{data[i]:.2f}"
cell.value = float(_)
i += 1
except:
cell.value = None
# =======================================
def main(path, sub, rcs, vel, trq, trqh, dur, rpm, w2t):
data_files = initialization(path, sub, w2t)
if sub == 'max':
current_max(data_files, rcs, trqh, w2t)
elif sub == 'avg':
current_avg(data_files, rcs, trqh, w2t)
elif sub == 'cycle':
current_cycle(dur, data_files, rcs, vel, trq, trqh, rpm, w2t)
else:
pass
if __name__ == '__main__':
stop = 0
main(*argv[1:])