1. [APIs: do_brake.py]

- 修改ready_to_go信号的接收逻辑,适配大负载机型
2. [APIs: do_current.py]
   - 修改ready_to_go信号的接收逻辑,适配大负载机型
   - 调整单轴测试时间为35s,适配大负载机型,调整堵转电流持续时间15s,适当减少测试时间
   - 将act信号置为False的动作放在初始化,增加程序健壮性
   - 修改所有输出文件的命名,在扩展名之前加入时间戳
This commit is contained in:
2024-07-13 13:40:04 +08:00
parent a66a55bcd3
commit d76ee3d223
5 changed files with 20 additions and 16 deletions

View File

@ -129,7 +129,7 @@ def data_proc_regular(path, filename, channel, scenario_time):
df1 = pandas.DataFrame.from_dict(_d2d_vel)
df2 = pandas.DataFrame.from_dict(_d2d_trq)
df = pandas.concat([df1, df2], axis=1)
_filename = f'{path}\\single\\j{channel+1}_single.data'
_filename = f'{path}\\single\\j{channel+1}_single_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
elif channel in list(range(6, 9)):
with open(filename, 'r', encoding='utf-8') as f_obj:
@ -178,37 +178,37 @@ def data_proc_regular(path, filename, channel, scenario_time):
df_01 = pandas.DataFrame.from_dict(_d2d_vel_0)
df_02 = pandas.DataFrame.from_dict(_d2d_trq_0)
df = pandas.concat([df_01, df_02], axis=1)
_filename = f'{path}\\s_{channel-5}\\j1_s_{channel-5}_{scenario_time}.data'
_filename = f'{path}\\s_{channel-5}\\j1_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = pandas.DataFrame.from_dict(_d2d_vel_1)
df_02 = pandas.DataFrame.from_dict(_d2d_trq_1)
df = pandas.concat([df_01, df_02], axis=1)
_filename = f'{path}\\s_{channel-5}\\j2_s_{channel-5}_{scenario_time}.data'
_filename = f'{path}\\s_{channel-5}\\j2_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = pandas.DataFrame.from_dict(_d2d_vel_2)
df_02 = pandas.DataFrame.from_dict(_d2d_trq_2)
df = pandas.concat([df_01, df_02], axis=1)
_filename = f'{path}\\s_{channel-5}\\j3_s_{channel-5}_{scenario_time}.data'
_filename = f'{path}\\s_{channel-5}\\j3_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = pandas.DataFrame.from_dict(_d2d_vel_3)
df_02 = pandas.DataFrame.from_dict(_d2d_trq_3)
df = pandas.concat([df_01, df_02], axis=1)
_filename = f'{path}\\s_{channel-5}\\j4_s_{channel-5}_{scenario_time}.data'
_filename = f'{path}\\s_{channel-5}\\j4_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = pandas.DataFrame.from_dict(_d2d_vel_4)
df_02 = pandas.DataFrame.from_dict(_d2d_trq_4)
df = pandas.concat([df_01, df_02], axis=1)
_filename = f'{path}\\s_{channel-5}\\j5_s_{channel-5}_{scenario_time}.data'
_filename = f'{path}\\s_{channel-5}\\j5_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = pandas.DataFrame.from_dict(_d2d_vel_5)
df_02 = pandas.DataFrame.from_dict(_d2d_trq_5)
df = pandas.concat([df_01, df_02], axis=1)
_filename = f'{path}\\s_{channel-5}\\j6_s_{channel-5}_{scenario_time}.data'
_filename = f'{path}\\s_{channel-5}\\j6_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
elif channel in list(range(9, 15)):
with open(filename, 'r', encoding='utf-8') as f_obj:
@ -227,7 +227,7 @@ def data_proc_regular(path, filename, channel, scenario_time):
df1 = pandas.DataFrame.from_dict(_d2d_vel)
df2 = pandas.DataFrame.from_dict(_d2d_trq)
df = pandas.concat([df1, df2], axis=1)
_filename = f'{path}\\single\\j{channel-8}_hold.data'
_filename = f'{path}\\single\\j{channel-8}_hold_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
@ -248,7 +248,7 @@ def data_proc_inertia(path, filename, channel):
df1 = pandas.DataFrame.from_dict(_d2d_vel)
df2 = pandas.DataFrame.from_dict(_d2d_trq)
df = pandas.concat([df1, df2], axis=1)
_filename = f'{path}\\inertia\\j{channel+4}_inertia.data'
_filename = f'{path}\\inertia\\j{channel+4}_inertia_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)

View File

@ -223,7 +223,8 @@ def find_point(data_file, pos, flag, df, _row_s, _row_e, w2t, exitcode, threshol
else:
return _row_s, _row_e
else:
w2t(f"[{pos}] {data_file}数据有误,需要检查,无法找到第{exitcode}个有效点...", 0, exitcode, 'red')
# w2t(f"[{pos}] {data_file}数据有误,需要检查,无法找到第{exitcode}个有效点...", 0, exitcode, 'red')
w2t(f"[{pos}] {data_file}数据有误,需要检查,无法找到第{exitcode}个有效点...", 0, 0, 'red')
elif flag == 'gt':
while _row_e > end_point:
speed_avg = df.iloc[_row_s:_row_e, 0].abs().mean()
@ -234,7 +235,8 @@ def find_point(data_file, pos, flag, df, _row_s, _row_e, w2t, exitcode, threshol
else:
return _row_s, _row_e
else:
w2t(f"[{pos}] {data_file}数据有误,需要检查,无法找到有效起始点或结束点...", 0, exitcode, 'red')
# w2t(f"[{pos}] {data_file}数据有误,需要检查,无法找到有效起始点或结束点...", 0, exitcode, 'red')
w2t(f"[{pos}] {data_file}数据有误,需要检查,无法找到有效起始点或结束点...", 0, 0, 'red')
def p_single(wb, single, vel, trq, rpms, w2t):