This repository has been archived on 2025-02-25. You can view files and clone it, but cannot push or open issues or pull requests.
gitea 04bd1238d2 v0.2.0.5(2024/07/31)
此版本改动较大,公共部分做了规整,放置到新建文件夹 commons 当中,并所有自定义模块引入 logging 模块,记录重要信息
1. [t_change_ui: clibs.py]
   - 调整代码组织结构,新增模块,将公共函数以及类合并入此
   - 将一些常量放入该模块
   - 引入logging/concurrent_log_handler模块,并作初始化操作,供其他模块使用,按50M切割,最多保留10份
   - prj_to_xcore函数设置工程名部分重写,修复了多个prj工程可能不能执行的问题
2. [t_change_ui: openapi.py]
   - 完全重写了 get_from_id 函数,使更精准
   - 在 msg_storage 函数中,增加 logger,保留所有响应消息
   - 删除 heartbeat 函数中的日志保存功能部分
   - 心跳再次修改为 2s...
3. [t_change_ui: aio.py]
   - 增加了日志初始化部分
   - detect_network 函数中修改重新实例化HR间隔为 4s,对应心跳
4. [t_change_ui: do_brake.py]
   - 使用一直打开曲线的方法规避解决了 OOM 的问题,同时修改数据处理方式,只取最后 12s
5. [t_change_ui: do_current.py]
   - 保持电流,只取最后 15s
6. [t_change_ui: all the part]: 引入 commons 包,并定制了 logging 输出,后续持续优化
2024-07-31 08:05:36 +08:00

167 lines
5.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from pandas import read_csv
from csv import reader
from sys import argv
from openpyxl import Workbook
from logging import getLogger
from commons import clibs
logger = getLogger(__file__)
def find_point(bof, step, pos, data_file, flag, df, row, w2t):
# bof: backward or forward
# pos: used for debug
# flag: greater than or lower than
if flag == 'gt':
while 0 < row < df.index[-1]-100:
_value = df.iloc[row, 2]
if _value > 2:
if bof == 'backward':
row -= step
elif bof == 'forward':
row += step
continue
else:
if bof == 'backward':
row_target = row - step
elif bof == 'forward':
row_target = row + step
break
else:
if bof == 'backward':
w2t(f"[{pos}] 在 {data_file} 中,无法正确识别数据,需要确认...", 0, 2, 'red')
elif bof == 'forward':
row_target = row + 100
elif flag == 'lt':
while 0 < row < df.index[-1]-100:
_value = df.iloc[row, 2]
if _value < 2:
if bof == 'backward':
row -= step
elif bof == 'forward':
row += step
continue
else:
if bof == 'backward':
row_target = row - step
elif bof == 'forward':
row_target = row + step
break
else:
if bof == 'backward':
w2t(f"[{pos}] 在 {data_file} 中,无法正确识别数据,需要确认...", 0, 3, 'red')
elif bof == 'forward':
row_target = row + 100
return row_target
def get_cycle_info(data_file, df, row, step, w2t):
# end -> middle: low
# middle -> start: high
# 1. 从最后读取数据无论是大于1还是小于1都舍弃找到相反的值的起始点
# 2. 从起始点,继续往前寻找,找到与之数值相反的中间点
# 3. 从中间点,继续往前寻找,找到与之数值相反的结束点,至此,得到了高低数值的时间区间以及一轮的周期时间
if df.iloc[row, 2] < 2:
row = find_point('backward', step, 'a1', data_file, 'lt', df, row, w2t)
_row = find_point('backward', step, 'a2', data_file, 'gt', df, row, w2t)
_row = find_point('backward', step, 'a3', data_file, 'lt', df, _row, w2t)
row_end = find_point('backward', step, 'a4', data_file, 'gt', df, _row, w2t)
row_middle = find_point('backward', step, 'a5', data_file, 'lt', df, row_end, w2t)
row_start = find_point('backward', step, 'a6', data_file, 'gt', df, row_middle, w2t)
return row_end-row_middle, row_middle-row_start, row_end-row_start
def initialization(path, w2t):
_, data_files = clibs.traversal_files(path, w2t)
for data_file in data_files:
if not data_file.lower().endswith('.csv'):
w2t(f"{data_file} 文件后缀错误,只允许 .csv 文件,需要确认!", 0, 1, 'red')
return data_files
def preparation(data_file, wb, w2t):
shtname = data_file.split('\\')[-1].split('.')[0]
ws = wb.create_sheet(shtname)
csv_reader = reader(open(data_file))
i = 0
begin = 70
for row in csv_reader:
i += 1
if i == 1:
begin = int(row[1])
break
df = read_csv(data_file, sep=',', encoding='gbk', skip_blank_lines=False, header=begin - 1, on_bad_lines='warn')
low, high, cycle = get_cycle_info(data_file, df, df.index[-1]-110, 5, w2t)
return ws, df, low, high, cycle
def single_file_proc(ws, data_file, df, low, high, cycle, w2t):
_row = _row_lt = _row_gt = count = 1
_step = 5
_data = {}
row_max = df.index[-1]-100
# print(data_file)
while _row < row_max:
if count not in _data.keys():
_data[count] = []
_value = df.iloc[_row, 2]
if _value < 2:
_row_lt = find_point('forward', _step, 'c'+str(_row), data_file, 'lt', df, _row, w2t)
_start = int(_row_gt + (_row_lt - _row_gt - 50) / 2)
_end = _start + 50
value = df.iloc[_start:_end, 2].mean() + 3 * df.iloc[_start:_end, 2].std()
_data[count].append(value)
else:
_row_gt = find_point('forward', _step, 'c'+str(_row), data_file, 'gt', df, _row, w2t)
if _row_gt - _row_lt > cycle * 2:
count += 1
_row = max(_row_gt, _row_lt)
for i in range(2, 10):
ws.cell(row=1, column=i).value = f"{i-1}次测试"
ws.cell(row=i, column=1).value = f"{i-1}次精度变化"
# print(_data)
for i in sorted(_data.keys()):
_row = 2
_column = i + 1
for value in _data[i]:
ws.cell(row=_row, column=_column).value = float(value)
_row += 1
def execution(data_files, w2t):
wb = Workbook()
for data_file in data_files:
ws, df, low, high, cycle = preparation(data_file, wb, w2t)
# print(f"low = {low}")
# print(f"high = {high}")
# print(f"cycle = {cycle}")
single_file_proc(ws, data_file, df, low, high, cycle, w2t)
wd = data_files[0].split('\\')
del wd[-1]
wd = '\\'.join(wd)
filename = wd + '\\result.xlsx'
wb.save(filename)
wb.close()
w2t('----------------------------------------')
w2t('所有文件均已处理完毕')
def main(path, w2t):
data_files = initialization(path, w2t)
execution(data_files, w2t)
if __name__ == '__main__':
main(path=argv[1], w2t=argv[2])