自动化测试的功能迁移完毕,待测试

This commit is contained in:
2025-01-14 23:52:52 +08:00
parent 0e67a2831c
commit 855448664c
9 changed files with 520 additions and 1198 deletions

View File

@@ -1,15 +1,9 @@
import json
from os import mkdir
import os
import time
from time import sleep, time
from sys import argv
from paramiko import SSHClient, AutoAddPolicy
from json import loads
from pandas import DataFrame, concat
import paramiko
import pandas
from common import clibs
display_pdo_params = [{"name": name, "channel": chl} for name in ["hw_joint_vel_feedback", "device_servo_trq_feedback", "hw_sensor_trq_feedback"] for chl in range(6)]
def initialization(path, sub, data_dirs, data_files, hr, w2t):
def check_files():
@@ -34,12 +28,12 @@ def initialization(path, sub, data_dirs, data_files, hr, w2t):
w2t("1. T_电机电流.xlsx\n2. xxxx.zip\n", "red", "ConfigFileError")
w2t("数据目录合规性检查结束,未发现问题......\n")
if sub == "tool100" or sub == "inertia":
mkdir(f"{path}/single")
mkdir(f"{path}/s_1")
mkdir(f"{path}/s_2")
mkdir(f"{path}/s_3")
os.mkdir(f"{path}/single")
os.mkdir(f"{path}/s_1")
os.mkdir(f"{path}/s_2")
os.mkdir(f"{path}/s_3")
elif sub == "inertia":
mkdir(f"{path}/inertia")
os.mkdir(f"{path}/inertia")
else:
w2t("负载选择错误,电机电流测试只能选择 tool100/inertia 规格!\n", "red", "LoadSelectError")
@@ -55,216 +49,75 @@ def initialization(path, sub, data_dirs, data_files, hr, w2t):
server_file = f"/home/luoshi/bin/controller/robot_cfg/{robot_type}/{robot_type}.cfg"
local_file = path + f"/{robot_type}.cfg"
clibs.c_pd.pull_file_from_server(server_file, local_file)
return local_file
prj_file = check_files()
config_file = get_configs()
get_configs()
return config_file, prj_file
return prj_file
def data_proc_regular(path, filename, channel, scenario_time):
if channel in list(range(6)):
with open(filename, 'r', encoding='utf-8') as f_obj:
lines = f_obj.readlines()
_d2d_vel = {'hw_joint_vel_feedback': []}
_d2d_trq = {'device_servo_trq_feedback': []}
_d2d_sensor = {'hw_sensor_trq_feedback': []}
for line in lines[-500:]: # 保留最后25s的数据
data = eval(line.strip())['data']
for item in data:
try:
item['value'].reverse()
except KeyError:
continue
if item.get('channel', None) == channel and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == channel and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == channel and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_sensor['hw_sensor_trq_feedback'].extend(item['value'])
def single_axis_proc(path, records, number):
text = "single" if number < 6 else "hold"
number = number if number < 6 else number - 6
d_vel, d_trq, d_sensor = [], [], []
for record in records:
print(f"record = {record}")
data = eval(record)["data"]
for item in data:
if item.get("channel", None) == number and item.get("name", None) == "hw_joint_vel_feedback":
d_vel.extend(item["value"])
elif item.get("channel", None) == number and item.get("name", None) == "device_servo_trq_feedback":
d_trq.extend(item["value"])
elif item.get("channel", None) == number and item.get("name", None) == "hw_sensor_trq_feedback":
d_sensor.extend(item["value"])
df1 = DataFrame.from_dict(_d2d_vel)
df2 = DataFrame.from_dict(_d2d_trq)
df3 = DataFrame.from_dict(_d2d_sensor)
df = concat([df1, df2, df3], axis=1)
_filename = f'{path}\\single\\j{channel+1}_single_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
elif channel in list(range(6, 9)):
with open(filename, 'r', encoding='utf-8') as f_obj:
lines = f_obj.readlines()
_d2d_vel_0 = {'hw_joint_vel_feedback': []}
_d2d_trq_0 = {'device_servo_trq_feedback': []}
_d2d_sensor_0 = {'hw_sensor_trq_feedback': []}
_d2d_vel_1 = {'hw_joint_vel_feedback': []}
_d2d_trq_1 = {'device_servo_trq_feedback': []}
_d2d_sensor_1 = {'hw_sensor_trq_feedback': []}
_d2d_vel_2 = {'hw_joint_vel_feedback': []}
_d2d_trq_2 = {'device_servo_trq_feedback': []}
_d2d_sensor_2 = {'hw_sensor_trq_feedback': []}
_d2d_vel_3 = {'hw_joint_vel_feedback': []}
_d2d_trq_3 = {'device_servo_trq_feedback': []}
_d2d_sensor_3 = {'hw_sensor_trq_feedback': []}
_d2d_vel_4 = {'hw_joint_vel_feedback': []}
_d2d_trq_4 = {'device_servo_trq_feedback': []}
_d2d_sensor_4 = {'hw_sensor_trq_feedback': []}
_d2d_vel_5 = {'hw_joint_vel_feedback': []}
_d2d_trq_5 = {'device_servo_trq_feedback': []}
_d2d_sensor_5 = {'hw_sensor_trq_feedback': []}
for line in lines:
data = eval(line.strip())['data']
for item in data:
try:
item['value'].reverse()
except KeyError:
continue
if item.get('channel', None) == 0 and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel_0['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == 0 and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq_0['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 0 and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_sensor_0['hw_sensor_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 1 and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel_1['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == 1 and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq_1['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 1 and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_sensor_1['hw_sensor_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 2 and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel_2['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == 2 and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq_2['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 3 and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_sensor_2['hw_sensor_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 3 and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel_3['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == 3 and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq_3['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 3 and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_sensor_3['hw_sensor_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 4 and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel_4['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == 4 and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq_4['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 4 and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_sensor_4['hw_sensor_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 5 and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel_5['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == 5 and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq_5['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == 5 and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_sensor_5['hw_sensor_trq_feedback'].extend(item['value'])
df_01 = DataFrame.from_dict(_d2d_vel_0)
df_02 = DataFrame.from_dict(_d2d_trq_0)
df_03 = DataFrame.from_dict(_d2d_sensor_0)
df = concat([df_01, df_02, df_03], axis=1)
_filename = f'{path}\\s_{channel-5}\\j1_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = DataFrame.from_dict(_d2d_vel_1)
df_02 = DataFrame.from_dict(_d2d_trq_1)
df_03 = DataFrame.from_dict(_d2d_sensor_1)
df = concat([df_01, df_02, df_03], axis=1)
_filename = f'{path}\\s_{channel-5}\\j2_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = DataFrame.from_dict(_d2d_vel_2)
df_02 = DataFrame.from_dict(_d2d_trq_2)
df_03 = DataFrame.from_dict(_d2d_sensor_2)
df = concat([df_01, df_02, df_03], axis=1)
_filename = f'{path}\\s_{channel-5}\\j3_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = DataFrame.from_dict(_d2d_vel_3)
df_02 = DataFrame.from_dict(_d2d_trq_3)
df_03 = DataFrame.from_dict(_d2d_sensor_3)
df = concat([df_01, df_02, df_03], axis=1)
_filename = f'{path}\\s_{channel-5}\\j4_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = DataFrame.from_dict(_d2d_vel_4)
df_02 = DataFrame.from_dict(_d2d_trq_4)
df_03 = DataFrame.from_dict(_d2d_sensor_4)
df = concat([df_01, df_02, df_03], axis=1)
_filename = f'{path}\\s_{channel-5}\\j5_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df_01 = DataFrame.from_dict(_d2d_vel_5)
df_02 = DataFrame.from_dict(_d2d_trq_5)
df_03 = DataFrame.from_dict(_d2d_sensor_5)
df = concat([df_01, df_02, df_03], axis=1)
_filename = f'{path}\\s_{channel-5}\\j6_s_{channel-5}_{scenario_time}_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
elif channel in list(range(9, 15)):
with open(filename, 'r', encoding='utf-8') as f_obj:
lines = f_obj.readlines()
_d2d_vel = {'hw_joint_vel_feedback': []}
_d2d_trq = {'device_servo_trq_feedback': []}
_d2d_sensor = {'hw_sensor_trq_feedback': []}
for line in lines[-300:]: # 保留最后15s的数据
data = eval(line.strip())['data']
for item in data:
try:
item['value'].reverse()
except KeyError:
continue
if item.get('channel', None) == channel-9 and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == channel-9 and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == channel-9 and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_sensor['hw_sensor_trq_feedback'].extend(item['value'])
df1 = DataFrame.from_dict(_d2d_vel)
df2 = DataFrame.from_dict(_d2d_trq)
df3 = DataFrame.from_dict(_d2d_sensor)
df = concat([df1, df2, df3], axis=1)
_filename = f'{path}\\single\\j{channel-8}_hold_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df1 = pandas.DataFrame.from_dict({"hw_joint_vel_feedback": d_vel})
df2 = pandas.DataFrame.from_dict({"device_servo_trq_feedback": d_trq})
df3 = pandas.DataFrame.from_dict({"hw_sensor_trq_feedback": d_sensor})
df = pandas.concat([df1, df2, df3], axis=1)
filename = f"{path}/single/j{number + 1}_{text}_{time.time()}.data"
df.to_csv(filename, sep="\t", index=False)
def data_proc_inertia(path, filename, channel):
with open(filename, 'r', encoding='utf-8') as f_obj:
lines = f_obj.readlines()
_d2d_vel = {'hw_joint_vel_feedback': []}
_d2d_trq = {'device_servo_trq_feedback': []}
_d2d_sensor = {'hw_sensor_trq_feedback': []}
for line in lines:
data = eval(line.strip())['data']
def scenario_proc(path, records, number, scenario_time):
d_vel, d_trq, d_sensor = [], [], []
for record in records:
print(f"record = {record}")
data = eval(record)["data"]
for axis in range(6):
for item in data:
try:
item['value'].reverse()
except KeyError:
continue
if item.get('channel', None) == channel+3 and item.get('name', None) == 'hw_joint_vel_feedback':
_d2d_vel['hw_joint_vel_feedback'].extend(item['value'])
elif item.get('channel', None) == channel+3 and item.get('name', None) == 'device_servo_trq_feedback':
_d2d_trq['device_servo_trq_feedback'].extend(item['value'])
elif item.get('channel', None) == channel+3 and item.get('name', None) == 'hw_sensor_trq_feedback':
_d2d_trq['hw_sensor_trq_feedback'].extend(item['value'])
if item.get("channel", None) == axis and item.get("name", None) == "hw_joint_vel_feedback":
d_vel.extend(item["value"])
elif item.get("channel", None) == axis and item.get("name", None) == "device_servo_trq_feedback":
d_trq.extend(item["value"])
elif item.get("channel", None) == axis and item.get("name", None) == "hw_sensor_trq_feedback":
d_sensor.extend(item["value"])
df1 = DataFrame.from_dict(_d2d_vel)
df2 = DataFrame.from_dict(_d2d_trq)
df3 = DataFrame.from_dict(_d2d_sensor)
df = concat([df1, df2, df3], axis=1)
_filename = f'{path}\\inertia\\j{channel+4}_inertia_{time()}.data'
df.to_csv(_filename, sep='\t', index=False)
df1 = pandas.DataFrame.from_dict({"hw_joint_vel_feedback": d_vel})
df2 = pandas.DataFrame.from_dict({"device_servo_trq_feedback": d_trq})
df3 = pandas.DataFrame.from_dict({"hw_sensor_trq_feedback": d_sensor})
df = pandas.concat([df1, df2, df3], axis=1)
filename = f"{path}/s_{number-11}/j{axis}_s_{number-11}_{scenario_time}_{time.time()}.data"
df.to_csv(filename, sep="\t", index=False)
def gen_result_file(path, loadsel, disc, number, scenario_time):
filename = path + f'\\data.txt'
with open(filename, 'w', encoding='utf-8') as f_obj:
for line in disc[number][1]:
f_obj.write(str(line)+'\n')
if loadsel == 'tool100':
data_proc_regular(path, filename, number, scenario_time)
elif loadsel == 'inertia':
data_proc_inertia(path, filename, number)
@clibs.db_lock
def gen_result_file(path, number, scenario_time):
if number < 12: # 35s/15s == 700/300
len_records = 700 if number < 6 else 300
clibs.cursor.execute(f"select content from logs where content like 'diagnosis.result' limit {len_records}")
records = clibs.cursor.fetchall()
single_axis_proc(path, records, number)
elif number < 15: # scenario time
len_records = int(scenario_time * 20) + 1
clibs.cursor.execute(f"select content from logs where content like 'diagnosis.result' limit {len_records}")
records = clibs.cursor.fetchall()
scenario_proc(path, records, number, scenario_time)
def run_rl(path, hr, md, sub, w2t):
def run_rl(path, prj_file, hr, md, sub, w2t):
prj_name = prj_file.split("/")[-1].split(".")[0]
display_pdo_params = [{"name": name, "channel": chl} for name in ["hw_joint_vel_feedback", "device_servo_trq_feedback", "hw_sensor_trq_feedback"] for chl in range(6)]
c_regular = [
"scenario(0, j1_p, j1_n, p_speed, p_tool, i_tool)",
"scenario(0, j2_p, j2_n, p_speed, p_tool, i_tool)",
@@ -272,118 +125,104 @@ def run_rl(path, hr, md, sub, w2t):
"scenario(0, j4_p, j4_n, p_speed, p_tool, i_tool)",
"scenario(0, j5_p, j5_n, p_speed, p_tool, i_tool)",
"scenario(0, j6_p, j6_n, p_speed, p_tool, i_tool)",
"scenario(1, j6_p, j6_n, p_speed, p_tool, i_tool)",
"scenario(2, j6_p, j6_n, p_speed, p_tool, i_tool)",
"scenario(3, j6_p, j6_n, p_speed, p_tool, i_tool)",
"scenario(4, j1_hold, j1_hold, p_speed, p_tool, i_tool)",
"scenario(4, j2_hold, j2_hold, p_speed, p_tool, i_tool)",
"scenario(4, j3_hold, j3_hold, p_speed, p_tool, i_tool)",
"scenario(4, j4_hold, j4_hold, p_speed, p_tool, i_tool)",
"scenario(4, j5_hold, j5_hold, p_speed, p_tool, i_tool)",
"scenario(4, j6_hold, j6_hold, p_speed, p_tool, i_tool)",
"scenario(1, j6_p, j6_n, p_speed, p_tool, i_tool)",
"scenario(2, j6_p, j6_n, p_speed, p_tool, i_tool)",
"scenario(3, j6_p, j6_n, p_speed, p_tool, i_tool)",
]
c_inertia = [
"scenario(5, j4_p_inertia, j4_n_inertia, p_speed, p_tool, i_tool)",
"scenario(5, j5_p_inertia, j5_n_inertia, p_speed, p_tool, i_tool)",
"scenario(5, j6_p_inertia, j6_n_inertia, p_speed, p_tool, i_tool)",
]
disc_regular = {
0: ['一轴', []], 1: ['二轴', []], 2: ['三轴', []], 3: ['四轴', []], 4: ['五轴', []], 5: ['六轴', []],
6: ['场景一', []], 7: ['场景二', []], 8: ['场景三', []], 9: ['一轴保持', []], 10: ['二轴保持', []],
11: ['三轴保持', []], 12: ['四轴保持', []], 13: ['五轴保持', []], 14: ['六轴保持', []]
}
disc_inertia = {0: ['四轴惯量', []], 1: ['五轴惯量', []], 2: ['六轴惯量', []]}
if sub == 'tool100':
conditions = c_regular
disc = disc_regular
elif sub == 'inertia':
conditions = c_inertia
disc = disc_inertia
disc_regular = ["一轴", "二轴", "三轴", "四轴", "五轴", "六轴", "一轴保持", "二轴保持", "三轴保持", "四轴保持", "五轴保持", "六轴保持", "场景一", "场景二", "场景三"]
disc_inertia = ["四轴惯量", "五轴惯量", "六轴惯量"]
conditions, disc = [], []
if sub == "tool100":
conditions, disc = c_regular, disc_regular
elif sub == "inertia":
conditions, disc = c_inertia, disc_inertia
# preparation 触发软急停,并解除,目的是让可能正在运行着的机器停下来
hr.execution('diagnosis.open', hr, w2t, tab_name, open=True, display_open=True)
hr.execution('diagnosis.set_params', hr, w2t, tab_name, display_pdo_params=display_pdo_params)
# clibs.execution('diagnosis.save', hr, w2t, tab_name, save=True) # 这条命令有问题
# 打开诊断曲线,触发软急停,并解除,目的是让可能正在运行着的机器停下来
hr.execution("diagnosis.open", open=True, display_open=True, overrun=True, turn_area=True, delay_motion=False)
hr.execution("diagnosis.set_params", display_pdo_params=display_pdo_params, frequency=50, version="1.4.1")
md.trigger_estop()
md.reset_estop()
for condition in conditions:
number = conditions.index(condition)
w2t(f"正在执行{disc[number][0]}测试......", 0, 0, 'purple', tab_name)
w2t(f"正在执行{disc[number]}测试......\n")
# 1. 将act重置为False并修改要执行的场景
# 1. 将act重置为False并修改要执行的场景
md.write_act(False)
ssh = SSHClient()
ssh.set_missing_host_key_policy(AutoAddPolicy())
ssh.connect(clibs.ip_addr, 22, username='luoshi', password='luoshi2019')
cmd = 'cd /home/luoshi/bin/controller/; '
cmd += 'sudo sed -i "/scenario/d" projects/target/_build/current/main.mod; '
cmd += f'sudo sed -i "/DONOTDELETE/i {condition}" projects/target/_build/current/main.mod'
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(clibs.ip_addr, clibs.ssh_port, username=clibs.username, password=clibs.password)
cmd = "cd /home/luoshi/bin/controller/; "
cmd += f'sudo sed -i "/scenario/d" projects/{prj_name}/_build/current/main.mod; '
cmd += f'sudo sed -i "/DONOTDELETE/i {condition}" projects/{prj_name}/_build/current/main.mod'
stdin, stdout, stderr = ssh.exec_command(cmd, get_pty=True)
stdin.write('luoshi2019' + '\n')
stdin.write(clibs.password + "\n")
stdout.read().decode() # 需要read一下才能正常执行
stderr.read().decode()
# 2. reload工程后pp2main并且自动模式和上电
prj_path = 'target/_build/target.prj'
clibs.execution('overview.reload', hr, w2t, tab_name, prj_path=prj_path, tasks=['current'])
clibs.execution('rl_task.pp_to_main', hr, w2t, tab_name, tasks=['current'])
clibs.execution('state.switch_auto', hr, w2t, tab_name)
clibs.execution('state.switch_motor_on', hr, w2t, tab_name)
prj_path = f"{prj_name}/_build/{prj_name}.prj"
hr.execution("overview.reload", prj_path=prj_path, tasks=["current"])
hr.execution("rl_task.pp_to_main", tasks=["current"])
hr.execution("state.switch_auto")
hr.execution("state.switch_motor_on")
# 3. 开始运行程序单轴运行35s
clibs.execution('rl_task.set_run_params', hr, w2t, tab_name, loop_mode=True, override=1.0)
clibs.execution('rl_task.run', hr, w2t, tab_name, tasks=['current'])
_t_start = time()
hr.execution("rl_task.set_run_params", loop_mode=True, override=1.0)
hr.execution("rl_task.run", tasks=["current"])
t_start = time.time()
while True:
if md.read_ready_to_go() == 1:
md.write_act(True)
break
else:
if (time() - _t_start) // 20 > 1:
w2t("20s内未收到机器人的运行信号需要确认RL程序编写正确并正常执行...", 0, 111, 'red', tab_name)
else:
sleep(1)
time.sleep(1)
if (time.time() - t_start) // 20 > 1:
w2t("20s 内未收到机器人的运行信号需要确认RL程序编写正确并正常执行...", "red", "ReadySignalTimeoutError")
# 4. 打开诊断曲线,并执行采集
sleep(10) # 保证程序已经运行起来,其实主要是为了保持电流的采集而设定
time.sleep(10) # 保证程序已经运行起来,其实主要是为了保持电流的采集而设定
scenario_time = 0
if number < 6:
sleep(35)
elif number > 8:
sleep(15)
else:
_t_start = time()
if number < 6: # 单轴
time.sleep(35)
elif number < 12: # 堵转
time.sleep(15)
else: # 场景
t_start = time.time()
while True:
scenario_time = md.read_scenario_time()
if float(scenario_time) > 1:
w2t(f"场景{number-5}的周期时间:{scenario_time}", 0, 0, 'green', tab_name)
w2t(f"场景{number-5}的周期时间:{scenario_time}\n")
break
else:
if (time()-_t_start)//60 > 3:
w2t(f"未收到场景{number-5}的周期时间需要确认RL程序编写正确并正常执行...", 0, 111, 'red', tab_name)
else:
sleep(5)
sleep(1) # 一定要延迟一秒再读一次scenario time寄存器因为一开始读取的数值不准确
time.sleep(5)
if (time.time()-t_start)//60 > 3:
w2t(f"未收到场景{number-5}的周期时间需要确认RL程序编写正确并正常执行...\n", "red", "GetScenarioTimeError")
time.sleep(1) # 一定要延迟一秒再读一次scenario time寄存器因为一开始读取的数值不准确
scenario_time = md.read_scenario_time()
sleep(float(scenario_time)*0.2) # 再运行周期的20%即可
time.sleep(float(scenario_time)*0.2) # 再运行周期的20%即可
# 5.停止程序运行,保留数据并处理输出
clibs.execution('rl_task.stop', hr, w2t, tab_name, tasks=['current'])
_c_msg = hr.c_msg.copy()
for _msg in _c_msg:
if 'diagnosis.result' in _msg:
disc[number][1].insert(0, loads(_msg))
else:
hr.c_msg_xs.clear()
if len(hr.c_msg) > 270:
del hr.c_msg[270:]
gen_result_file(path, loadsel, disc, number, scenario_time)
clibs.execution("rl_task.stop", tasks=["current"])
gen_result_file(path, number, scenario_time)
else:
if loadsel == 'tool100':
w2t("单轴和场景电机电流采集完毕,如需采集惯量负载,须切换负载类型,并更换惯量负载,重新执行。", 0, 0, 'green', tab_name)
elif loadsel == 'inertia':
w2t("惯量负载电机电流采集完毕,如需采集单轴/场景/保持电机电流,须切换负载类型,并更换偏置负载,重新执行。", 0, 0, 'green', tab_name)
if sub == "tool100":
w2t("单轴和场景电机电流采集完毕,如需采集惯量负载,须切换负载类型,并更换惯量负载,重新执行。\n", "green")
elif sub == "inertia":
w2t("惯量负载电机电流采集完毕,如需采集单轴/场景/保持电机电流,须切换负载类型,并更换偏置负载,重新执行。\n", "green")
hr.execution("diagnosis.open", open=False, display_open=False, overrun=True, turn_area=True, delay_motion=False)
hr.execution("diagnosis.set_params", display_pdo_params=[], frequency=50, version="1.4.1")
def main():
@@ -395,11 +234,10 @@ def main():
insert_logdb = clibs.insert_logdb
data_dirs, data_files = clibs.traversal_files(path, w2t)
config_file, prj_file = initialization(path, sub, data_dirs, data_files, hr, w2t)
prj_file = initialization(path, sub, data_dirs, data_files, hr, w2t)
clibs.c_pd.push_prj_to_server(prj_file)
clibs.c_hr.execution("diagnosis.open", open=False, display_open=False, overrun=True, turn_area=True, delay_motion=False)
# run_rl(path, hr, md, sub, w2t)
run_rl(path, prj_file, hr, md, sub, w2t)
if __name__ == '__main__':
if __name__ == "__main__":
main()