184 lines
8.6 KiB
Python
184 lines
8.6 KiB
Python
import pdfplumber
|
|
import openpyxl
|
|
import os
|
|
from common import clibs
|
|
|
|
|
|
def p_iso(file, p_files, ws, tmpfile):
|
|
p_files.append(file)
|
|
|
|
pdf = pdfplumber.open(file)
|
|
with open(tmpfile, mode="w", encoding="utf-8") as fb:
|
|
for page in pdf.pages:
|
|
fb.write(page.extract_text())
|
|
with open(tmpfile, mode="r", encoding="utf-8") as fb:
|
|
lines = fb.readlines()
|
|
lines = [line for line in lines if not line.startswith("Page ")]
|
|
for line in lines:
|
|
if line.strip() == "Pose Accuracy and Repeatability":
|
|
index = lines.index(line)
|
|
ws.cell(row=3, column=7).value = float(lines[index+4].split()[1])
|
|
ws.cell(row=4, column=7).value = float(lines[index+5].split()[1])
|
|
ws.cell(row=5, column=7).value = float(lines[index+6].split()[1])
|
|
ws.cell(row=6, column=7).value = float(lines[index+7].split()[1])
|
|
ws.cell(row=7, column=7).value = float(lines[index+8].split()[1])
|
|
|
|
ws.cell(row=8, column=7).value = float(lines[index+4].split()[2])
|
|
ws.cell(row=9, column=7).value = float(lines[index+5].split()[2])
|
|
ws.cell(row=10, column=7).value = float(lines[index+6].split()[2])
|
|
ws.cell(row=11, column=7).value = float(lines[index+7].split()[2])
|
|
ws.cell(row=12, column=7).value = float(lines[index+8].split()[2])
|
|
elif line.strip() == "Pose Accuracy Variation":
|
|
index = lines.index(line)
|
|
ws.cell(row=13, column=7).value = float(lines[index+4].split()[1])
|
|
ws.cell(row=14, column=7).value = float(lines[index+5].split()[1])
|
|
ws.cell(row=15, column=7).value = float(lines[index+6].split()[1])
|
|
elif line.strip() == "Distance Accuracy":
|
|
index = lines.index(line)
|
|
ws.cell(row=16, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=17, column=7).value = float(lines[index + 4].split()[2])
|
|
elif line.strip() == "Stabilisation Time and Overshoot":
|
|
index = lines.index(line)
|
|
ws.cell(row=18, column=7).value = float(lines[index + 7].split()[3])
|
|
ws.cell(row=19, column=7).value = float(lines[index + 7].split()[2])
|
|
elif line.strip() == "Velocity Accuracy and Repeatability":
|
|
index = lines.index(line)
|
|
ws.cell(row=20, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=21, column=7).value = float(lines[index + 4].split()[2])
|
|
ws.cell(row=22, column=7).value = float(lines[index + 4].split()[3])
|
|
elif line.strip()[:31] == "Path Accuracy and Repeatability":
|
|
index = lines.index(line)
|
|
ws.cell(row=29, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=30, column=7).value = float(lines[index + 4].split()[2])
|
|
elif line.strip() == "Corner Overshoot and Roundoff":
|
|
index = lines.index(line)
|
|
ws.cell(row=35, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=36, column=7).value = float(lines[index + 4].split()[2])
|
|
elif line.strip() == "Robot Weaving":
|
|
index = lines.index(line)
|
|
ws.cell(row=41, column=7).value = float(lines[index + 4].split()[2])
|
|
ws.cell(row=42, column=7).value = float(lines[index + 4].split()[3])
|
|
ws.cell(row=43, column=7).value = float(lines[index + 4].split()[4])
|
|
else:
|
|
pass
|
|
pdf.close()
|
|
|
|
|
|
def p_iso_100(file, p_files, ws, tmpfile):
|
|
p_files.append(file)
|
|
|
|
pdf = pdfplumber.open(file)
|
|
with open(tmpfile, mode="w", encoding="utf-8") as fb:
|
|
for page in pdf.pages:
|
|
fb.write(page.extract_text())
|
|
with open(tmpfile, mode="r", encoding="utf-8") as fb:
|
|
lines = fb.readlines()
|
|
lines = [line for line in lines if not line.startswith("Page ")]
|
|
for line in lines:
|
|
if line.strip() == "Velocity Accuracy and Repeatability":
|
|
index = lines.index(line)
|
|
ws.cell(row=26, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=27, column=7).value = float(lines[index + 4].split()[2])
|
|
ws.cell(row=28, column=7).value = float(lines[index + 4].split()[3])
|
|
elif line.strip()[:31] == "Path Accuracy and Repeatability":
|
|
index = lines.index(line)
|
|
ws.cell(row=33, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=34, column=7).value = float(lines[index + 4].split()[2])
|
|
elif line.strip() == "Corner Overshoot and Roundoff":
|
|
index = lines.index(line)
|
|
ws.cell(row=39, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=40, column=7).value = float(lines[index + 4].split()[2])
|
|
elif line.strip() == "Robot Weaving":
|
|
index = lines.index(line)
|
|
ws.cell(row=47, column=7).value = float(lines[index + 4].split()[2])
|
|
ws.cell(row=48, column=7).value = float(lines[index + 4].split()[3])
|
|
ws.cell(row=49, column=7).value = float(lines[index + 4].split()[4])
|
|
else:
|
|
pass
|
|
pdf.close()
|
|
|
|
|
|
def p_iso_1000(file, p_files, ws, tmpfile):
|
|
p_files.append(file)
|
|
|
|
pdf = pdfplumber.open(file)
|
|
with open(tmpfile, mode="w", encoding="utf-8") as fb:
|
|
for page in pdf.pages:
|
|
fb.write(page.extract_text())
|
|
with open(tmpfile, mode="r", encoding="utf-8") as fb:
|
|
lines = fb.readlines()
|
|
lines = [line for line in lines if not line.startswith("Page ")]
|
|
for line in lines:
|
|
if line.strip() == "Velocity Accuracy and Repeatability":
|
|
index = lines.index(line)
|
|
ws.cell(row=23, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=24, column=7).value = float(lines[index + 4].split()[2])
|
|
ws.cell(row=25, column=7).value = float(lines[index + 4].split()[3])
|
|
elif line.strip()[:31] == "Path Accuracy and Repeatability":
|
|
index = lines.index(line)
|
|
ws.cell(row=31, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=32, column=7).value = float(lines[index + 4].split()[2])
|
|
elif line.strip() == "Corner Overshoot and Roundoff":
|
|
index = lines.index(line)
|
|
ws.cell(row=37, column=7).value = float(lines[index + 4].split()[1])
|
|
ws.cell(row=38, column=7).value = float(lines[index + 4].split()[2])
|
|
elif line.strip() == "Robot Weaving":
|
|
index = lines.index(line)
|
|
ws.cell(row=44, column=7).value = float(lines[index + 4].split()[2])
|
|
ws.cell(row=45, column=7).value = float(lines[index + 4].split()[3])
|
|
ws.cell(row=46, column=7).value = float(lines[index + 4].split()[4])
|
|
else:
|
|
pass
|
|
pdf.close()
|
|
|
|
|
|
def main():
|
|
path = clibs.data_dp["_path"]
|
|
w2t = clibs.w2t
|
|
dirs, files = clibs.traversal_files(path, 1)
|
|
|
|
filename = f"{path}/iso-results.xlsx"
|
|
tmpfile = f"{path}/data.txt"
|
|
wb, ws = None, None
|
|
try:
|
|
wb = openpyxl.load_workbook(filename)
|
|
ws = wb.active
|
|
for i in range(3, 50):
|
|
ws.cell(row=i, column=7).value = None
|
|
except Exception as Err:
|
|
clibs.insert_logdb("ERROR", "iso", f"main: 无法打开文件 {filename}")
|
|
w2t(f"发生错误:{Err}", "red", "FileOpenError")
|
|
|
|
p_files = []
|
|
for file in files:
|
|
if file.endswith(".pdf") and file.split("/")[-1] == "ISO.pdf":
|
|
w2t(f"正在处理{file}......\n")
|
|
p_iso(file, p_files, ws, tmpfile)
|
|
w2t(f"文件{file}已处理完毕。\n")
|
|
|
|
elif file.endswith(".pdf") and file.split("/")[-1] == "ISO-V100.pdf":
|
|
w2t(f"正在处理{file}......\n")
|
|
p_iso_100(file, p_files, ws, tmpfile)
|
|
w2t(f"文件{file}已处理完毕。\n")
|
|
|
|
elif file.endswith(".pdf") and file.split("/")[-1] == "ISO-V1000.pdf":
|
|
w2t(f"正在处理{file}......\n")
|
|
p_iso_1000(file, p_files, ws, tmpfile)
|
|
w2t(f"文件{file}已处理完毕。\n")
|
|
|
|
else:
|
|
pass
|
|
wb.save(filename)
|
|
wb.close()
|
|
|
|
if len(p_files) == 0:
|
|
w2t(f"目录 {path} 下没有需要处理的文件,需要确认......", "red")
|
|
else:
|
|
os.remove(tmpfile)
|
|
w2t("------------------------------------------\n")
|
|
w2t("所有文件均已处理完毕!\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|