v0.0.5(2024/05/23)
1. 完善了函数注释
2. 调整了阈值和步长
3. 删除了just_open函数,以及对应的win32com库(Thank GOD!终于可以不用这个库了)
4. 重写了获取开始点位的代码,直接使用speed来判断,而不用角度,所以find_row_start_dp以及copy_data_to_excel_file函数也被一并删除
This commit is contained in:
gitea 2024-05-23 13:59:06 +08:00
parent de6d1d47c8
commit 44ef429d5a
3 changed files with 66 additions and 109 deletions

View File

@ -2,25 +2,15 @@
import os
import sys
import openpyxl
from win32com.client import DispatchEx
import time
from threading import Thread
import pythoncom
import pandas
def just_open(filename):
pythoncom.CoInitialize()
xlapp = DispatchEx("Excel.Application")
xlapp.Visible = False
xlbook = xlapp.Workbooks.Open(filename)
xlapp.DisplayAlerts = 0
xlbook.SaveAs(filename)
xlbook.Close()
xlapp.Quit()
def traversal_files(path):
# 功能:以列表的形式分别返回指定路径下的文件和文件夹,不包含子目录
# 参数:路径
# 返回值:路径下的文件夹列表 路径下的文件列表
if not os.path.exists(path):
msg = f'数据文件夹{path}不存在,请确认后重试......'
warn_pause_exit(msg, 1, 11)
@ -37,55 +27,57 @@ def traversal_files(path):
def get_threshold_step(excel_file, AXIS):
# 功能负载和速度100%且是j2的时候做特殊处理
# 参数新生成的excel轴号
# 返回值:速度差阈值,处理步长
conditions = sorted(excel_file.split('\\')[-2].split('_'))
# 只有负载和速度是100%时才会启用更敏感的step
flg = 1 if conditions[0][-3:] == '100' and conditions[2][-3:] == '100' else 0
if flg == 1 and AXIS == 'j2':
threshold = 50
step = 20
threshold = 30
step = 5
else:
threshold = 50
step = 100
threshold = 10
step = 5
return threshold, step
def find_row_start(excel_file, ws_data, conditions, AV, RR, AXIS):
# 功能:查找数据文件中有效数据的行号,也即最后一个速度下降的点位
# 参数:如上
# 返回值:速度下降点位,最后的数据点位
ratio = float(conditions[1].removeprefix('speed'))/100
speed_max = AV * ratio * RR / 6
row_max = ws_data.max_row
row_start = row_max - 1000
row_max = row_start = ws_data.max_row
threshold, step = get_threshold_step(excel_file, AXIS)
while row_start > 0:
while row_start > step+1:
speed = ws_data[f"A{row_start}"].value
if speed is None or int(speed) < 1:
row_start -= step
row_start -= 50
continue
row_end = row_start - step
if row_end < 2:
msg = f"可能是{excel_file.replace('xlsx', 'data')}, 这个文件数据采集有问题,也有可能是程序步长设定问题......" \
f"建议重新采集,或者先删除该文件夹,重新运行程序,先手动处理"
warn_pause_exit(msg, 1, 10)
_a = ws_data[f"A{row_start}"].value
_b = ws_data[f"A{row_end}"].value
if abs(_a-speed_max) < threshold and abs(_b-speed_max) < threshold and abs(_a-_b) < threshold:
row_start -= (step + 200)
_ = []
for i in range(row_start, row_start-step+1, -1):
_.append(ws_data[f"A{i}"].value)
speed_avg = abs(sum(_))/len(_)
if abs(speed_avg-speed_max) < threshold:
row_start = row_start - 10
break
else:
row_start -= step
else:
os.remove(excel_file)
msg = f"可能是{excel_file.replace('xlsx', 'data')},这个文件数据采集有问题,比如采集的时机不对,请检查......"
msg = f"可能是{excel_file.replace('xlsx', 'data')},这个文件数据采集有问题,比如采集的时机不对,也有可能是程序步长设定问题,请检查......"
warn_pause_exit(msg, 1, 9)
return row_max, row_start
def find_result_sheet_name(conditions, count):
# 该函数比较简单功能是获取结果文件准确的sheet页名称
# 功能获取结果文件准确的sheet页名称
# 参数:臂展和速度的列表
# 返回值结果文件对应的sheet name
# 33%臂展_33%速度_正1
reach = conditions[0].removeprefix('reach')
speed = conditions[1].removeprefix('speed')
@ -95,12 +87,17 @@ def find_result_sheet_name(conditions, count):
def copy_data_to_result(ws_data, ws_result, row_max, row_start):
# 功能:将数据文件中有效数据拷贝至结果文件对应的 sheet
# 参数:如上
# 返回值:-
# 结果文件数据清零
for row in ws_result.iter_rows(min_row=2, min_col=1, max_row=6000 - row_start + 2, max_col=2):
for row in ws_result.iter_rows(min_row=2, min_col=1, max_row=2000, max_col=2):
for cell in row:
cell.value = None
# 将合适的数据复制到结果文件
row_max = row_start + 399 if row_max-row_start > 400 else row_max
data = []
for row in ws_data.iter_rows(min_row=row_start, min_col=1, max_row=row_max, max_col=2):
for cell in row:
@ -112,74 +109,16 @@ def copy_data_to_result(ws_data, ws_result, row_max, row_start):
i = i + 1
def copy_data_to_excel_file(wb_data, ws_result, row_max, row_start, excel_file, RC, RR):
try:
del wb_data['dp']
wb_data.create_sheet('dp')
ws_dp = wb_data['dp']
except Exception as Err:
wb_data.create_sheet('dp')
ws_dp = wb_data['dp']
data = []
for row in ws_result.iter_rows(min_row=1, min_col=1, max_row=row_max-row_start+2, max_col=5):
for cell in row:
data.append(cell.value)
i = 0
for row in ws_dp.iter_rows(min_row=1, min_col=1, max_row=row_max-row_start+2, max_col=5):
for cell in row:
cell.value = data[i]
i = i + 1
ws_dp.cell(row=5, column=7).value = RC
ws_dp.cell(row=6, column=7).value = RR
wb_data.save(excel_file)
wb_data.close()
just_open(excel_file) # 为了能读取到公式计算的数值,必须要用 win32com 打开关闭一次
wb_data = openpyxl.load_workbook(excel_file, data_only=True)
ws_dp = wb_data['dp']
return wb_data, ws_dp
def find_row_start_dp(data_file, ws_dp, row_max, row_start, conditions, AV):
ratio = float(conditions[1].removeprefix('speed'))/100
av_max = AV * ratio
row_max_dp = row_max - row_start + 1 + 1 # title row
row_start_dp = row_max_dp - 5
while row_start_dp > 6:
# 处理异常数据当从数据文件中拷贝的有效数据超过5000时会触发下面代码块
angular = ws_dp.cell(row=row_start_dp, column=4).value
if angular is None or str(angular) == '0':
row_start_dp -= 50
continue
_a = float(ws_dp.cell(row=row_start_dp, column=4).value)
_b = float(ws_dp.cell(row=row_start_dp - 1, column=4).value)
_c = float(ws_dp.cell(row=row_start_dp - 2, column=4).value)
_d = float(ws_dp.cell(row=row_start_dp - 3, column=4).value)
_e = float(ws_dp.cell(row=row_start_dp - 4, column=4).value)
avg = (_a + _b + _c + _d + _e) / 5
if abs(avg - av_max) < 1:
row_start_dp = row_start_dp + 10 - 5 # +10 是因为结果文件 C2 的值是 10-5是做了保守处理相当于再往前移动 5 个点位
break
else:
row_start_dp -= 5 # 保守一点,每次移动 5 个点位,如果想要加快程序运行,可适当调整更大一些,建议不超过 15
else:
msg = "数据有误,未找到平衡的点,请确认!"
warn_pause_exit(msg, 1, 1)
return row_start_dp
def single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS):
# 功能:完成单个数据文件的处理
# 参数:如上
# 返回值:-
excel_file = data_file.replace('.data', '.xlsx')
sheet_name = data_file.split('\\')[-1].removesuffix('.data')
df = pandas.read_csv(data_file, sep='\t')
df.to_excel(excel_file, sheet_name=sheet_name, index=False)
conditions = sorted(data_file.split('\\')[-2].split('_')[1:])
# print(f"conditions = {conditions}")
result_sheet_name = find_result_sheet_name(conditions, count)
ws_result = wb_result[result_sheet_name]
@ -188,16 +127,17 @@ def single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS):
row_max, row_start = find_row_start(excel_file, ws_data, conditions, AV, RR, AXIS)
copy_data_to_result(ws_data, ws_result, row_max, row_start)
wb_data, ws_dp = copy_data_to_excel_file(wb_data, ws_result, row_max, row_start, excel_file, RC, RR)
row_start_dp = find_row_start_dp(data_file, ws_dp, row_max, row_start, conditions, AV)
ws_result["G2"] = int(row_start_dp)
ws_result["C2"] = int(2)
ws_result["G2"] = int(10+4)
wb_data.save(excel_file)
wb_data.close()
def now_doing_msg(docs, flag):
# 功能:输出正在处理的文件或目录
# 参数文件或目录start 或 done 标识
# 返回值:-
now = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
file_type = 'file' if os.path.isfile(docs) else 'dir'
if flag == 'start' and file_type == 'dir':
@ -211,6 +151,9 @@ def now_doing_msg(docs, flag):
def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
# 功能:完成一个结果文件的数据处理
# 参数:结果文件,数据目录,以及预读取的参数
# 返回值:-
prefix = result_file.split('\\')[-1].split('_')[0]
wb_result = openpyxl.load_workbook(result_file) # 打开和关闭结果文件夹十分耗时间
for raw_data_dir in raw_data_dirs:
@ -220,12 +163,11 @@ def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
# 数据文件串行处理模式---------------------------------
# count = 1
# for data_file in data_files:
# now_doing_msg(data_file, 'start')
# single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS)
# count += 1
# now_doing_msg(data_file, 'done')
# now_doing_msg(data_file, 'start')
# single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS)
# count += 1
# now_doing_msg(data_file, 'done')
# ---------------------------------------------------
# 数据文件并行处理模式---------------------------------
threads = [Thread(target=single_file_process, args=(data_files[0], wb_result, 1, AV, RR, RC, AXIS)),
Thread(target=single_file_process, args=(data_files[1], wb_result, 2, AV, RR, RC, AXIS)),
@ -242,6 +184,9 @@ def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
def warn_pause_exit(msg, pause_num, exit_num):
# 功能:打印告警信息,并推出程序
# 参数:告警信息,暂停的次数,退出的值
# 返回值:-
print(msg + '\n')
for i in range(pause_num):
_ = input("Press ENTER to continue......\n")
@ -249,6 +194,9 @@ def warn_pause_exit(msg, pause_num, exit_num):
def check_files(raw_data_dirs, result_files):
# 功能:检查数据文件以及结果文件的合规性
# 参数:数据文件夹,结果文件
# 返回值:-
if len(result_files) != 3:
msg = "结果文件数目错误,结果文件有且只有三个,请确认!"
for result_file in result_files:
@ -299,6 +247,9 @@ def check_files(raw_data_dirs, result_files):
def delete_excel_files(raw_data_dirs):
# 功能:删除数据文件夹里的 .xlsx 文件
# 参数:数据文件夹
# 返回值:-
for raw_data_dir in raw_data_dirs:
_, raw_data_files = traversal_files(raw_data_dir)
for raw_data_file in raw_data_files:
@ -307,6 +258,9 @@ def delete_excel_files(raw_data_dirs):
def initialization():
# 功能:初始化,记录开始时间,读取预定义参数
# 参数:-
# 返回值:结果文件,数据文件夹,以及预定义参数
time_start = time.time() # 记录开始时间
try:
# read init configurations from config file
@ -331,6 +285,9 @@ def initialization():
def execution(args):
# 功能:执行处理所有数据文件
# 参数initialization函数的返回值
# 返回值:-
raw_data_dirs, result_files, time_start, AV, RR, RC, AXIS = args
prefix = []
for raw_data_dir in raw_data_dirs:

Binary file not shown.

View File

@ -6,8 +6,8 @@ VSVersionInfo(
ffi=FixedFileInfo(
# filevers and prodvers should be always a tuple with four items: (1, 2, 3, 4)
# Set not needed items to zero 0.
filevers=(0, 0, 4, 0),
prodvers=(0, 0, 4, 0),
filevers=(0, 0, 5, 0),
prodvers=(0, 0, 5, 0),
# Contains a bitmask that specifies the valid bits 'flags'r
mask=0x3f,
# Contains a bitmask that specifies the Boolean attributes of the file.
@ -31,12 +31,12 @@ VSVersionInfo(
'040904b0',
[StringStruct('CompanyName', 'Rokae - https://www.rokae.com/'),
StringStruct('FileDescription', 'All in one automatic operating tool'),
StringStruct('FileVersion', '0.0.4 (2024-05-20)'),
StringStruct('FileVersion', '0.0.5 (2024-05-20)'),
StringStruct('InternalName', 'AIO.exe'),
StringStruct('LegalCopyright', '© 2024-2024 Manford Fan'),
StringStruct('OriginalFilename', 'AIO.exe'),
StringStruct('ProductName', 'AIO'),
StringStruct('ProductVersion', '0.0.4 (2024-05-20)')])
StringStruct('ProductVersion', '0.0.5 (2024-05-20)')])
]),
VarFileInfo([VarStruct('Translation', [1033, 1200])])
]