Compare commits

...

2 Commits

Author SHA1 Message Date
09d63b6630 [add] icon.ico and readme.txt 2024-05-23 14:00:32 +08:00
44ef429d5a [modify]
v0.0.5(2024/05/23)
1. 完善了函数注释
2. 调整了阈值和步长
3. 删除了just_open函数,以及对应的win32com库(Thank GOD!终于可以不用这个库了)
4. 重写了获取开始点位的代码,直接使用speed来判断,而不用角度,所以find_row_start_dp以及copy_data_to_excel_file函数也被一并删除
2024-05-23 13:59:06 +08:00
5 changed files with 173 additions and 109 deletions

View File

@ -2,25 +2,15 @@
import os
import sys
import openpyxl
from win32com.client import DispatchEx
import time
from threading import Thread
import pythoncom
import pandas
def just_open(filename):
pythoncom.CoInitialize()
xlapp = DispatchEx("Excel.Application")
xlapp.Visible = False
xlbook = xlapp.Workbooks.Open(filename)
xlapp.DisplayAlerts = 0
xlbook.SaveAs(filename)
xlbook.Close()
xlapp.Quit()
def traversal_files(path):
# 功能:以列表的形式分别返回指定路径下的文件和文件夹,不包含子目录
# 参数:路径
# 返回值:路径下的文件夹列表 路径下的文件列表
if not os.path.exists(path):
msg = f'数据文件夹{path}不存在,请确认后重试......'
warn_pause_exit(msg, 1, 11)
@ -37,55 +27,57 @@ def traversal_files(path):
def get_threshold_step(excel_file, AXIS):
# 功能负载和速度100%且是j2的时候做特殊处理
# 参数新生成的excel轴号
# 返回值:速度差阈值,处理步长
conditions = sorted(excel_file.split('\\')[-2].split('_'))
# 只有负载和速度是100%时才会启用更敏感的step
flg = 1 if conditions[0][-3:] == '100' and conditions[2][-3:] == '100' else 0
if flg == 1 and AXIS == 'j2':
threshold = 50
step = 20
threshold = 30
step = 5
else:
threshold = 50
step = 100
threshold = 10
step = 5
return threshold, step
def find_row_start(excel_file, ws_data, conditions, AV, RR, AXIS):
# 功能:查找数据文件中有效数据的行号,也即最后一个速度下降的点位
# 参数:如上
# 返回值:速度下降点位,最后的数据点位
ratio = float(conditions[1].removeprefix('speed'))/100
speed_max = AV * ratio * RR / 6
row_max = ws_data.max_row
row_start = row_max - 1000
row_max = row_start = ws_data.max_row
threshold, step = get_threshold_step(excel_file, AXIS)
while row_start > 0:
while row_start > step+1:
speed = ws_data[f"A{row_start}"].value
if speed is None or int(speed) < 1:
row_start -= step
row_start -= 50
continue
row_end = row_start - step
if row_end < 2:
msg = f"可能是{excel_file.replace('xlsx', 'data')}, 这个文件数据采集有问题,也有可能是程序步长设定问题......" \
f"建议重新采集,或者先删除该文件夹,重新运行程序,先手动处理"
warn_pause_exit(msg, 1, 10)
_a = ws_data[f"A{row_start}"].value
_b = ws_data[f"A{row_end}"].value
if abs(_a-speed_max) < threshold and abs(_b-speed_max) < threshold and abs(_a-_b) < threshold:
row_start -= (step + 200)
_ = []
for i in range(row_start, row_start-step+1, -1):
_.append(ws_data[f"A{i}"].value)
speed_avg = abs(sum(_))/len(_)
if abs(speed_avg-speed_max) < threshold:
row_start = row_start - 10
break
else:
row_start -= step
else:
os.remove(excel_file)
msg = f"可能是{excel_file.replace('xlsx', 'data')},这个文件数据采集有问题,比如采集的时机不对,请检查......"
msg = f"可能是{excel_file.replace('xlsx', 'data')},这个文件数据采集有问题,比如采集的时机不对,也有可能是程序步长设定问题,请检查......"
warn_pause_exit(msg, 1, 9)
return row_max, row_start
def find_result_sheet_name(conditions, count):
# 该函数比较简单功能是获取结果文件准确的sheet页名称
# 功能获取结果文件准确的sheet页名称
# 参数:臂展和速度的列表
# 返回值结果文件对应的sheet name
# 33%臂展_33%速度_正1
reach = conditions[0].removeprefix('reach')
speed = conditions[1].removeprefix('speed')
@ -95,12 +87,17 @@ def find_result_sheet_name(conditions, count):
def copy_data_to_result(ws_data, ws_result, row_max, row_start):
# 功能:将数据文件中有效数据拷贝至结果文件对应的 sheet
# 参数:如上
# 返回值:-
# 结果文件数据清零
for row in ws_result.iter_rows(min_row=2, min_col=1, max_row=6000 - row_start + 2, max_col=2):
for row in ws_result.iter_rows(min_row=2, min_col=1, max_row=2000, max_col=2):
for cell in row:
cell.value = None
# 将合适的数据复制到结果文件
row_max = row_start + 399 if row_max-row_start > 400 else row_max
data = []
for row in ws_data.iter_rows(min_row=row_start, min_col=1, max_row=row_max, max_col=2):
for cell in row:
@ -112,74 +109,16 @@ def copy_data_to_result(ws_data, ws_result, row_max, row_start):
i = i + 1
def copy_data_to_excel_file(wb_data, ws_result, row_max, row_start, excel_file, RC, RR):
try:
del wb_data['dp']
wb_data.create_sheet('dp')
ws_dp = wb_data['dp']
except Exception as Err:
wb_data.create_sheet('dp')
ws_dp = wb_data['dp']
data = []
for row in ws_result.iter_rows(min_row=1, min_col=1, max_row=row_max-row_start+2, max_col=5):
for cell in row:
data.append(cell.value)
i = 0
for row in ws_dp.iter_rows(min_row=1, min_col=1, max_row=row_max-row_start+2, max_col=5):
for cell in row:
cell.value = data[i]
i = i + 1
ws_dp.cell(row=5, column=7).value = RC
ws_dp.cell(row=6, column=7).value = RR
wb_data.save(excel_file)
wb_data.close()
just_open(excel_file) # 为了能读取到公式计算的数值,必须要用 win32com 打开关闭一次
wb_data = openpyxl.load_workbook(excel_file, data_only=True)
ws_dp = wb_data['dp']
return wb_data, ws_dp
def find_row_start_dp(data_file, ws_dp, row_max, row_start, conditions, AV):
ratio = float(conditions[1].removeprefix('speed'))/100
av_max = AV * ratio
row_max_dp = row_max - row_start + 1 + 1 # title row
row_start_dp = row_max_dp - 5
while row_start_dp > 6:
# 处理异常数据当从数据文件中拷贝的有效数据超过5000时会触发下面代码块
angular = ws_dp.cell(row=row_start_dp, column=4).value
if angular is None or str(angular) == '0':
row_start_dp -= 50
continue
_a = float(ws_dp.cell(row=row_start_dp, column=4).value)
_b = float(ws_dp.cell(row=row_start_dp - 1, column=4).value)
_c = float(ws_dp.cell(row=row_start_dp - 2, column=4).value)
_d = float(ws_dp.cell(row=row_start_dp - 3, column=4).value)
_e = float(ws_dp.cell(row=row_start_dp - 4, column=4).value)
avg = (_a + _b + _c + _d + _e) / 5
if abs(avg - av_max) < 1:
row_start_dp = row_start_dp + 10 - 5 # +10 是因为结果文件 C2 的值是 10-5是做了保守处理相当于再往前移动 5 个点位
break
else:
row_start_dp -= 5 # 保守一点,每次移动 5 个点位,如果想要加快程序运行,可适当调整更大一些,建议不超过 15
else:
msg = "数据有误,未找到平衡的点,请确认!"
warn_pause_exit(msg, 1, 1)
return row_start_dp
def single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS):
# 功能:完成单个数据文件的处理
# 参数:如上
# 返回值:-
excel_file = data_file.replace('.data', '.xlsx')
sheet_name = data_file.split('\\')[-1].removesuffix('.data')
df = pandas.read_csv(data_file, sep='\t')
df.to_excel(excel_file, sheet_name=sheet_name, index=False)
conditions = sorted(data_file.split('\\')[-2].split('_')[1:])
# print(f"conditions = {conditions}")
result_sheet_name = find_result_sheet_name(conditions, count)
ws_result = wb_result[result_sheet_name]
@ -188,16 +127,17 @@ def single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS):
row_max, row_start = find_row_start(excel_file, ws_data, conditions, AV, RR, AXIS)
copy_data_to_result(ws_data, ws_result, row_max, row_start)
wb_data, ws_dp = copy_data_to_excel_file(wb_data, ws_result, row_max, row_start, excel_file, RC, RR)
row_start_dp = find_row_start_dp(data_file, ws_dp, row_max, row_start, conditions, AV)
ws_result["G2"] = int(row_start_dp)
ws_result["C2"] = int(2)
ws_result["G2"] = int(10+4)
wb_data.save(excel_file)
wb_data.close()
def now_doing_msg(docs, flag):
# 功能:输出正在处理的文件或目录
# 参数文件或目录start 或 done 标识
# 返回值:-
now = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
file_type = 'file' if os.path.isfile(docs) else 'dir'
if flag == 'start' and file_type == 'dir':
@ -211,6 +151,9 @@ def now_doing_msg(docs, flag):
def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
# 功能:完成一个结果文件的数据处理
# 参数:结果文件,数据目录,以及预读取的参数
# 返回值:-
prefix = result_file.split('\\')[-1].split('_')[0]
wb_result = openpyxl.load_workbook(result_file) # 打开和关闭结果文件夹十分耗时间
for raw_data_dir in raw_data_dirs:
@ -220,12 +163,11 @@ def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
# 数据文件串行处理模式---------------------------------
# count = 1
# for data_file in data_files:
# now_doing_msg(data_file, 'start')
# single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS)
# count += 1
# now_doing_msg(data_file, 'done')
# now_doing_msg(data_file, 'start')
# single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS)
# count += 1
# now_doing_msg(data_file, 'done')
# ---------------------------------------------------
# 数据文件并行处理模式---------------------------------
threads = [Thread(target=single_file_process, args=(data_files[0], wb_result, 1, AV, RR, RC, AXIS)),
Thread(target=single_file_process, args=(data_files[1], wb_result, 2, AV, RR, RC, AXIS)),
@ -242,6 +184,9 @@ def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
def warn_pause_exit(msg, pause_num, exit_num):
# 功能:打印告警信息,并推出程序
# 参数:告警信息,暂停的次数,退出的值
# 返回值:-
print(msg + '\n')
for i in range(pause_num):
_ = input("Press ENTER to continue......\n")
@ -249,6 +194,9 @@ def warn_pause_exit(msg, pause_num, exit_num):
def check_files(raw_data_dirs, result_files):
# 功能:检查数据文件以及结果文件的合规性
# 参数:数据文件夹,结果文件
# 返回值:-
if len(result_files) != 3:
msg = "结果文件数目错误,结果文件有且只有三个,请确认!"
for result_file in result_files:
@ -299,6 +247,9 @@ def check_files(raw_data_dirs, result_files):
def delete_excel_files(raw_data_dirs):
# 功能:删除数据文件夹里的 .xlsx 文件
# 参数:数据文件夹
# 返回值:-
for raw_data_dir in raw_data_dirs:
_, raw_data_files = traversal_files(raw_data_dir)
for raw_data_file in raw_data_files:
@ -307,6 +258,9 @@ def delete_excel_files(raw_data_dirs):
def initialization():
# 功能:初始化,记录开始时间,读取预定义参数
# 参数:-
# 返回值:结果文件,数据文件夹,以及预定义参数
time_start = time.time() # 记录开始时间
try:
# read init configurations from config file
@ -331,6 +285,9 @@ def initialization():
def execution(args):
# 功能:执行处理所有数据文件
# 参数initialization函数的返回值
# 返回值:-
raw_data_dirs, result_files, time_start, AV, RR, RC, AXIS = args
prefix = []
for raw_data_dir in raw_data_dirs:

Binary file not shown.

View File

@ -6,8 +6,8 @@ VSVersionInfo(
ffi=FixedFileInfo(
# filevers and prodvers should be always a tuple with four items: (1, 2, 3, 4)
# Set not needed items to zero 0.
filevers=(0, 0, 4, 0),
prodvers=(0, 0, 4, 0),
filevers=(0, 0, 5, 0),
prodvers=(0, 0, 5, 0),
# Contains a bitmask that specifies the valid bits 'flags'r
mask=0x3f,
# Contains a bitmask that specifies the Boolean attributes of the file.
@ -31,12 +31,12 @@ VSVersionInfo(
'040904b0',
[StringStruct('CompanyName', 'Rokae - https://www.rokae.com/'),
StringStruct('FileDescription', 'All in one automatic operating tool'),
StringStruct('FileVersion', '0.0.4 (2024-05-20)'),
StringStruct('FileVersion', '0.0.5 (2024-05-20)'),
StringStruct('InternalName', 'AIO.exe'),
StringStruct('LegalCopyright', '© 2024-2024 Manford Fan'),
StringStruct('OriginalFilename', 'AIO.exe'),
StringStruct('ProductName', 'AIO'),
StringStruct('ProductVersion', '0.0.4 (2024-05-20)')])
StringStruct('ProductVersion', '0.0.5 (2024-05-20)')])
]),
VarFileInfo([VarStruct('Translation', [1033, 1200])])
]

BIN
rokae/brake/icon.ico Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 KiB

107
rokae/brake/readme.txt Normal file
View File

@ -0,0 +1,107 @@
程序功能自动化处理制动性能采集的数据减少人工处理时长目前测试单轴可从原来的4-6h减少到15min
使用方法:修改 configs.xlsx 配置文件中的一些参数(数据文件路径/减速比/最大角速度/额定电流),然后直接执行即可
第三方库pandas/pywin32/openpyxl
pip3 install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
pip3 install openpyxl -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
pip3 install pywin32 -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
pip3 install Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
python.exe -m pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
pip3 install --upgrade --force-reinstall numpy -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
打包方法pyinstaller.exe -F --version-file file_version_info.txt -i .\icon.ico .\aio.py
最好不用虚拟环境
注意事项:
1. 数据文件存储存储规则
所谓数据文件,就是我们拍急停的时候,采集到的 .data 文件,正方向拍三次急停,会采集到三个 .data 文件,存储在同一个文件夹内,即每组(三个 .data 文件)文件必须存储在同一个文件夹内,数据文件的命名无要求,
2. 文件夹命名规则
虽然对采集到的 .data 文件没有命名要求,但是对于文件夹的命名是有要求的,必须是如下格式:
loadXX_speedXX_reachXX 或者 loadXX_reachXX_speedXX
这里的XX代表不同条件下的测试数值比如
load100_speed33_reach66指的是负载100%速度33%臂展66%
3. 结果文件命名规则
所谓结果文件,就是处理数据的那个 excle 文件,该文件名字的前缀必须是 loadXX_XXXXXXXXX.xlsx比如
load33_自研_制动性能测试.xlsx
load66_自研_制动性能测试.xlsx
load100_自研_制动性能测试.xlsx
!!结果文件可以是没有数据的,也可以是之前有数据的,只要保证第 6 点中的那几个数据准确即可
4. 数据存储的组织结
..../j1/load100_speed33_reach100
..../j1/load100_speed66_reach100
....
..../j1/load100_speed100_reach100
..../j1/load100_speed33_reach100/2024_05_16_09_18_52.data
..../j1/load100_speed33_reach100/2024_05_16_09_19_52.data
..../j1/load100_speed33_reach100/2024_05_16_09_20_52.data
..../j1/load33_自研_制动性能测试.xlsx
..../j1/load66_自研_制动性能测试.xlsx
..../j1/load100_自研_制动性能测试.xlsx
5. 文件的打开与关闭
a. 在执行程序之前,需要关闭所有相关 excle 文件
b. 在执行程序之中,不允许打开相关 excle 文件
c. 在执行程序之后,需要逐个打开结果文件,并保存一次
6. 参数一致性检查
执行程序前,需要确定 configs.xlsx 中设定的减速比/最大角速度/额定电流的值是正确的
7. 数据准确性检查
执行完程序之后需要对结果文件的数据准确性做核对通过我自己的数据观察误差基本在10ms以内也即10个数据点误差较大的情况可自行调整
8. .data 数据顺序
.data 文件的第一列和第二列必须分别是速度和电流
9. 其他
程序运行主要的耗时集中在打开,保存和关闭结果文件,第一次打开的时候会比较慢,是因为 excel 在做首次公式的计算保存关闭之后再打开会比较快一些另外如果在运行出错并重复运行程序的时候无响应或者出现异常请打开任务管理器关闭一切和excel相关的进程重新运行即可
RELEASE CHANGES
已知问题:
1. office套件下运行好像有问题WPS无问题集中在just_open函数的实现上
v0.0.1(2024/05/18)
Draft
v0.0.2(2024/05/20)
1. 功能模块化,为后面其他功能奠定一个基本的框架
2. 使用了多线程提高效率
3. 优化了准备工作中的细节
4. 运行初始化时自动删除 raw_data_dir 中的 .xlsx 文件
5. 优化了输出格式
6. 使用 pyinstaller 库进行代码冻结并调试成功
v0.0.3(2024/05/21)
1. just_open函数打开失败的信息中添加文件名
2. 删除global变量函数全部通过传参实现
3. configuration.xlsx配置文件增加AXIS常量表示那个轴取值为 j1/j2/j3/j4/j5/j6/j7
4. [bugfix] 增加get_threshold_step函数用来获取在计算row_start时合适的阈值和步长主要是解决了二轴最差工况下最大速度是个尖端的问题
a. load100_speed100_reachxxx 二轴 threshold = 50 step = 20
b. 其他 threshold = 50 step = 100
如上是一个比较保守的设定因为设定的step比较小找到点之后要往后延200最好
5. 在find_row_start_dp函数中新增一个参数data_file方便后续调试
v0.0.4(2024/05/22)
1. 重新标定了get_threshold_step函数让处理更加准确
2. 新定义了now_doing_msg函数实时输出处理信息
3. 修改了find_row_start和find_row_start_dp函数增加的部分相同处理数据的时候先判断是否是空值或者是0此时可以加快步进
4. 修改了just_open函数不在做重试
v0.0.5(2024/05/23)
1. 完善了函数注释
2. 调整了阈值和步长
3. 删除了just_open函数以及对应的win32com库Thank GOD!终于可以不用这个库了)
4. 重写了获取开始点位的代码直接使用speed来判断而不用角度所以find_row_start_dp以及copy_data_to_excel_file函数也被一并删除
v0.x.x(2024/05/xx)
1. 修改configuration.xlsx变量顺序同步调整代码为了调整多功能框架aio.py文件将会作为入口程序存在不实现具体功能
2. 功能的实现将由具体的功能脚本实现aio.py只负责条件调用
3. 使用pytinstaller打包多文件为exe可执行程序
4. 新增了自动化处理电机电流数据的功能