Compare commits
2 Commits
de6d1d47c8
...
09d63b6630
Author | SHA1 | Date | |
---|---|---|---|
09d63b6630 | |||
44ef429d5a |
@ -2,25 +2,15 @@
|
||||
import os
|
||||
import sys
|
||||
import openpyxl
|
||||
from win32com.client import DispatchEx
|
||||
import time
|
||||
from threading import Thread
|
||||
import pythoncom
|
||||
import pandas
|
||||
|
||||
|
||||
def just_open(filename):
|
||||
pythoncom.CoInitialize()
|
||||
xlapp = DispatchEx("Excel.Application")
|
||||
xlapp.Visible = False
|
||||
xlbook = xlapp.Workbooks.Open(filename)
|
||||
xlapp.DisplayAlerts = 0
|
||||
xlbook.SaveAs(filename)
|
||||
xlbook.Close()
|
||||
xlapp.Quit()
|
||||
|
||||
|
||||
def traversal_files(path):
|
||||
# 功能:以列表的形式分别返回指定路径下的文件和文件夹,不包含子目录
|
||||
# 参数:路径
|
||||
# 返回值:路径下的文件夹列表 路径下的文件列表
|
||||
if not os.path.exists(path):
|
||||
msg = f'数据文件夹{path}不存在,请确认后重试......'
|
||||
warn_pause_exit(msg, 1, 11)
|
||||
@ -37,55 +27,57 @@ def traversal_files(path):
|
||||
|
||||
|
||||
def get_threshold_step(excel_file, AXIS):
|
||||
# 功能:负载和速度100%,且是j2的时候,做特殊处理
|
||||
# 参数:新生成的excel,轴号
|
||||
# 返回值:速度差阈值,处理步长
|
||||
conditions = sorted(excel_file.split('\\')[-2].split('_'))
|
||||
# 只有负载和速度是100%时,才会启用更敏感的step
|
||||
flg = 1 if conditions[0][-3:] == '100' and conditions[2][-3:] == '100' else 0
|
||||
if flg == 1 and AXIS == 'j2':
|
||||
threshold = 50
|
||||
step = 20
|
||||
threshold = 30
|
||||
step = 5
|
||||
else:
|
||||
threshold = 50
|
||||
step = 100
|
||||
threshold = 10
|
||||
step = 5
|
||||
|
||||
return threshold, step
|
||||
|
||||
|
||||
def find_row_start(excel_file, ws_data, conditions, AV, RR, AXIS):
|
||||
# 功能:查找数据文件中有效数据的行号,也即最后一个速度下降的点位
|
||||
# 参数:如上
|
||||
# 返回值:速度下降点位,最后的数据点位
|
||||
ratio = float(conditions[1].removeprefix('speed'))/100
|
||||
speed_max = AV * ratio * RR / 6
|
||||
|
||||
row_max = ws_data.max_row
|
||||
row_start = row_max - 1000
|
||||
row_max = row_start = ws_data.max_row
|
||||
|
||||
threshold, step = get_threshold_step(excel_file, AXIS)
|
||||
while row_start > 0:
|
||||
while row_start > step+1:
|
||||
speed = ws_data[f"A{row_start}"].value
|
||||
if speed is None or int(speed) < 1:
|
||||
row_start -= step
|
||||
row_start -= 50
|
||||
continue
|
||||
|
||||
row_end = row_start - step
|
||||
if row_end < 2:
|
||||
msg = f"可能是{excel_file.replace('xlsx', 'data')}, 这个文件数据采集有问题,也有可能是程序步长设定问题......" \
|
||||
f"建议重新采集,或者先删除该文件夹,重新运行程序,先手动处理"
|
||||
warn_pause_exit(msg, 1, 10)
|
||||
_a = ws_data[f"A{row_start}"].value
|
||||
_b = ws_data[f"A{row_end}"].value
|
||||
if abs(_a-speed_max) < threshold and abs(_b-speed_max) < threshold and abs(_a-_b) < threshold:
|
||||
row_start -= (step + 200)
|
||||
_ = []
|
||||
for i in range(row_start, row_start-step+1, -1):
|
||||
_.append(ws_data[f"A{i}"].value)
|
||||
speed_avg = abs(sum(_))/len(_)
|
||||
if abs(speed_avg-speed_max) < threshold:
|
||||
row_start = row_start - 10
|
||||
break
|
||||
else:
|
||||
row_start -= step
|
||||
else:
|
||||
os.remove(excel_file)
|
||||
msg = f"可能是{excel_file.replace('xlsx', 'data')},这个文件数据采集有问题,比如采集的时机不对,请检查......"
|
||||
msg = f"可能是{excel_file.replace('xlsx', 'data')},这个文件数据采集有问题,比如采集的时机不对,也有可能是程序步长设定问题,请检查......"
|
||||
warn_pause_exit(msg, 1, 9)
|
||||
|
||||
return row_max, row_start
|
||||
|
||||
|
||||
def find_result_sheet_name(conditions, count):
|
||||
# 该函数比较简单,功能是获取结果文件准确的sheet页名称
|
||||
# 功能:获取结果文件准确的sheet页名称
|
||||
# 参数:臂展和速度的列表
|
||||
# 返回值:结果文件对应的sheet name
|
||||
# 33%臂展_33%速度_正1
|
||||
reach = conditions[0].removeprefix('reach')
|
||||
speed = conditions[1].removeprefix('speed')
|
||||
@ -95,12 +87,17 @@ def find_result_sheet_name(conditions, count):
|
||||
|
||||
|
||||
def copy_data_to_result(ws_data, ws_result, row_max, row_start):
|
||||
# 功能:将数据文件中有效数据拷贝至结果文件对应的 sheet
|
||||
# 参数:如上
|
||||
# 返回值:-
|
||||
# 结果文件数据清零
|
||||
for row in ws_result.iter_rows(min_row=2, min_col=1, max_row=6000 - row_start + 2, max_col=2):
|
||||
for row in ws_result.iter_rows(min_row=2, min_col=1, max_row=2000, max_col=2):
|
||||
for cell in row:
|
||||
cell.value = None
|
||||
|
||||
# 将合适的数据复制到结果文件
|
||||
row_max = row_start + 399 if row_max-row_start > 400 else row_max
|
||||
|
||||
data = []
|
||||
for row in ws_data.iter_rows(min_row=row_start, min_col=1, max_row=row_max, max_col=2):
|
||||
for cell in row:
|
||||
@ -112,74 +109,16 @@ def copy_data_to_result(ws_data, ws_result, row_max, row_start):
|
||||
i = i + 1
|
||||
|
||||
|
||||
def copy_data_to_excel_file(wb_data, ws_result, row_max, row_start, excel_file, RC, RR):
|
||||
try:
|
||||
del wb_data['dp']
|
||||
wb_data.create_sheet('dp')
|
||||
ws_dp = wb_data['dp']
|
||||
except Exception as Err:
|
||||
wb_data.create_sheet('dp')
|
||||
ws_dp = wb_data['dp']
|
||||
|
||||
data = []
|
||||
for row in ws_result.iter_rows(min_row=1, min_col=1, max_row=row_max-row_start+2, max_col=5):
|
||||
for cell in row:
|
||||
data.append(cell.value)
|
||||
i = 0
|
||||
for row in ws_dp.iter_rows(min_row=1, min_col=1, max_row=row_max-row_start+2, max_col=5):
|
||||
for cell in row:
|
||||
cell.value = data[i]
|
||||
i = i + 1
|
||||
|
||||
ws_dp.cell(row=5, column=7).value = RC
|
||||
ws_dp.cell(row=6, column=7).value = RR
|
||||
|
||||
wb_data.save(excel_file)
|
||||
wb_data.close()
|
||||
just_open(excel_file) # 为了能读取到公式计算的数值,必须要用 win32com 打开关闭一次
|
||||
wb_data = openpyxl.load_workbook(excel_file, data_only=True)
|
||||
ws_dp = wb_data['dp']
|
||||
|
||||
return wb_data, ws_dp
|
||||
|
||||
|
||||
def find_row_start_dp(data_file, ws_dp, row_max, row_start, conditions, AV):
|
||||
ratio = float(conditions[1].removeprefix('speed'))/100
|
||||
av_max = AV * ratio
|
||||
row_max_dp = row_max - row_start + 1 + 1 # title row
|
||||
row_start_dp = row_max_dp - 5
|
||||
while row_start_dp > 6:
|
||||
# 处理异常数据:当从数据文件中拷贝的有效数据超过5000时,会触发下面代码块
|
||||
angular = ws_dp.cell(row=row_start_dp, column=4).value
|
||||
if angular is None or str(angular) == '0':
|
||||
row_start_dp -= 50
|
||||
continue
|
||||
_a = float(ws_dp.cell(row=row_start_dp, column=4).value)
|
||||
_b = float(ws_dp.cell(row=row_start_dp - 1, column=4).value)
|
||||
_c = float(ws_dp.cell(row=row_start_dp - 2, column=4).value)
|
||||
_d = float(ws_dp.cell(row=row_start_dp - 3, column=4).value)
|
||||
_e = float(ws_dp.cell(row=row_start_dp - 4, column=4).value)
|
||||
avg = (_a + _b + _c + _d + _e) / 5
|
||||
if abs(avg - av_max) < 1:
|
||||
row_start_dp = row_start_dp + 10 - 5 # +10 是因为结果文件 C2 的值是 10,-5是做了保守处理,相当于再往前移动 5 个点位
|
||||
break
|
||||
else:
|
||||
row_start_dp -= 5 # 保守一点,每次移动 5 个点位,如果想要加快程序运行,可适当调整更大一些,建议不超过 15
|
||||
else:
|
||||
msg = "数据有误,未找到平衡的点,请确认!"
|
||||
warn_pause_exit(msg, 1, 1)
|
||||
|
||||
return row_start_dp
|
||||
|
||||
|
||||
def single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS):
|
||||
# 功能:完成单个数据文件的处理
|
||||
# 参数:如上
|
||||
# 返回值:-
|
||||
excel_file = data_file.replace('.data', '.xlsx')
|
||||
sheet_name = data_file.split('\\')[-1].removesuffix('.data')
|
||||
df = pandas.read_csv(data_file, sep='\t')
|
||||
df.to_excel(excel_file, sheet_name=sheet_name, index=False)
|
||||
|
||||
conditions = sorted(data_file.split('\\')[-2].split('_')[1:])
|
||||
# print(f"conditions = {conditions}")
|
||||
result_sheet_name = find_result_sheet_name(conditions, count)
|
||||
ws_result = wb_result[result_sheet_name]
|
||||
|
||||
@ -188,16 +127,17 @@ def single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS):
|
||||
row_max, row_start = find_row_start(excel_file, ws_data, conditions, AV, RR, AXIS)
|
||||
|
||||
copy_data_to_result(ws_data, ws_result, row_max, row_start)
|
||||
wb_data, ws_dp = copy_data_to_excel_file(wb_data, ws_result, row_max, row_start, excel_file, RC, RR)
|
||||
row_start_dp = find_row_start_dp(data_file, ws_dp, row_max, row_start, conditions, AV)
|
||||
|
||||
ws_result["G2"] = int(row_start_dp)
|
||||
ws_result["C2"] = int(2)
|
||||
ws_result["G2"] = int(10+4)
|
||||
|
||||
wb_data.save(excel_file)
|
||||
wb_data.close()
|
||||
|
||||
|
||||
def now_doing_msg(docs, flag):
|
||||
# 功能:输出正在处理的文件或目录
|
||||
# 参数:文件或目录,start 或 done 标识
|
||||
# 返回值:-
|
||||
now = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
|
||||
file_type = 'file' if os.path.isfile(docs) else 'dir'
|
||||
if flag == 'start' and file_type == 'dir':
|
||||
@ -211,6 +151,9 @@ def now_doing_msg(docs, flag):
|
||||
|
||||
|
||||
def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
|
||||
# 功能:完成一个结果文件的数据处理
|
||||
# 参数:结果文件,数据目录,以及预读取的参数
|
||||
# 返回值:-
|
||||
prefix = result_file.split('\\')[-1].split('_')[0]
|
||||
wb_result = openpyxl.load_workbook(result_file) # 打开和关闭结果文件夹十分耗时间
|
||||
for raw_data_dir in raw_data_dirs:
|
||||
@ -220,12 +163,11 @@ def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
|
||||
# 数据文件串行处理模式---------------------------------
|
||||
# count = 1
|
||||
# for data_file in data_files:
|
||||
# now_doing_msg(data_file, 'start')
|
||||
# single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS)
|
||||
# count += 1
|
||||
# now_doing_msg(data_file, 'done')
|
||||
# now_doing_msg(data_file, 'start')
|
||||
# single_file_process(data_file, wb_result, count, AV, RR, RC, AXIS)
|
||||
# count += 1
|
||||
# now_doing_msg(data_file, 'done')
|
||||
# ---------------------------------------------------
|
||||
|
||||
# 数据文件并行处理模式---------------------------------
|
||||
threads = [Thread(target=single_file_process, args=(data_files[0], wb_result, 1, AV, RR, RC, AXIS)),
|
||||
Thread(target=single_file_process, args=(data_files[1], wb_result, 2, AV, RR, RC, AXIS)),
|
||||
@ -242,6 +184,9 @@ def data_process(result_file, raw_data_dirs, AV, RR, RC, AXIS):
|
||||
|
||||
|
||||
def warn_pause_exit(msg, pause_num, exit_num):
|
||||
# 功能:打印告警信息,并推出程序
|
||||
# 参数:告警信息,暂停的次数,退出的值
|
||||
# 返回值:-
|
||||
print(msg + '\n')
|
||||
for i in range(pause_num):
|
||||
_ = input("Press ENTER to continue......\n")
|
||||
@ -249,6 +194,9 @@ def warn_pause_exit(msg, pause_num, exit_num):
|
||||
|
||||
|
||||
def check_files(raw_data_dirs, result_files):
|
||||
# 功能:检查数据文件以及结果文件的合规性
|
||||
# 参数:数据文件夹,结果文件
|
||||
# 返回值:-
|
||||
if len(result_files) != 3:
|
||||
msg = "结果文件数目错误,结果文件有且只有三个,请确认!"
|
||||
for result_file in result_files:
|
||||
@ -299,6 +247,9 @@ def check_files(raw_data_dirs, result_files):
|
||||
|
||||
|
||||
def delete_excel_files(raw_data_dirs):
|
||||
# 功能:删除数据文件夹里的 .xlsx 文件
|
||||
# 参数:数据文件夹
|
||||
# 返回值:-
|
||||
for raw_data_dir in raw_data_dirs:
|
||||
_, raw_data_files = traversal_files(raw_data_dir)
|
||||
for raw_data_file in raw_data_files:
|
||||
@ -307,6 +258,9 @@ def delete_excel_files(raw_data_dirs):
|
||||
|
||||
|
||||
def initialization():
|
||||
# 功能:初始化,记录开始时间,读取预定义参数
|
||||
# 参数:-
|
||||
# 返回值:结果文件,数据文件夹,以及预定义参数
|
||||
time_start = time.time() # 记录开始时间
|
||||
try:
|
||||
# read init configurations from config file
|
||||
@ -331,6 +285,9 @@ def initialization():
|
||||
|
||||
|
||||
def execution(args):
|
||||
# 功能:执行处理所有数据文件
|
||||
# 参数:initialization函数的返回值
|
||||
# 返回值:-
|
||||
raw_data_dirs, result_files, time_start, AV, RR, RC, AXIS = args
|
||||
prefix = []
|
||||
for raw_data_dir in raw_data_dirs:
|
||||
|
Binary file not shown.
@ -6,8 +6,8 @@ VSVersionInfo(
|
||||
ffi=FixedFileInfo(
|
||||
# filevers and prodvers should be always a tuple with four items: (1, 2, 3, 4)
|
||||
# Set not needed items to zero 0.
|
||||
filevers=(0, 0, 4, 0),
|
||||
prodvers=(0, 0, 4, 0),
|
||||
filevers=(0, 0, 5, 0),
|
||||
prodvers=(0, 0, 5, 0),
|
||||
# Contains a bitmask that specifies the valid bits 'flags'r
|
||||
mask=0x3f,
|
||||
# Contains a bitmask that specifies the Boolean attributes of the file.
|
||||
@ -31,12 +31,12 @@ VSVersionInfo(
|
||||
'040904b0',
|
||||
[StringStruct('CompanyName', 'Rokae - https://www.rokae.com/'),
|
||||
StringStruct('FileDescription', 'All in one automatic operating tool'),
|
||||
StringStruct('FileVersion', '0.0.4 (2024-05-20)'),
|
||||
StringStruct('FileVersion', '0.0.5 (2024-05-20)'),
|
||||
StringStruct('InternalName', 'AIO.exe'),
|
||||
StringStruct('LegalCopyright', '© 2024-2024 Manford Fan'),
|
||||
StringStruct('OriginalFilename', 'AIO.exe'),
|
||||
StringStruct('ProductName', 'AIO'),
|
||||
StringStruct('ProductVersion', '0.0.4 (2024-05-20)')])
|
||||
StringStruct('ProductVersion', '0.0.5 (2024-05-20)')])
|
||||
]),
|
||||
VarFileInfo([VarStruct('Translation', [1033, 1200])])
|
||||
]
|
||||
|
BIN
rokae/brake/icon.ico
Normal file
BIN
rokae/brake/icon.ico
Normal file
Binary file not shown.
After Width: | Height: | Size: 4.2 KiB |
107
rokae/brake/readme.txt
Normal file
107
rokae/brake/readme.txt
Normal file
@ -0,0 +1,107 @@
|
||||
程序功能:自动化处理制动性能采集的数据,减少人工处理时长,目前测试单轴可从原来的4-6h,减少到15min
|
||||
使用方法:修改 configs.xlsx 配置文件中的一些参数(数据文件路径/减速比/最大角速度/额定电流),然后直接执行即可
|
||||
第三方库:pandas/pywin32/openpyxl
|
||||
pip3 install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
|
||||
pip3 install openpyxl -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
|
||||
pip3 install pywin32 -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
|
||||
pip3 install Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
|
||||
python.exe -m pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
|
||||
pip3 install --upgrade --force-reinstall numpy -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
|
||||
打包方法:pyinstaller.exe -F --version-file file_version_info.txt -i .\icon.ico .\aio.py
|
||||
最好不用虚拟环境
|
||||
|
||||
注意事项:
|
||||
1. 数据文件存储存储规则
|
||||
所谓数据文件,就是我们拍急停的时候,采集到的 .data 文件,正方向拍三次急停,会采集到三个 .data 文件,存储在同一个文件夹内,即每组(三个 .data 文件)文件必须存储在同一个文件夹内,数据文件的命名无要求,
|
||||
|
||||
2. 文件夹命名规则
|
||||
虽然对采集到的 .data 文件没有命名要求,但是对于文件夹的命名是有要求的,必须是如下格式:
|
||||
loadXX_speedXX_reachXX 或者 loadXX_reachXX_speedXX
|
||||
这里的XX代表不同条件下的测试数值,比如:
|
||||
load100_speed33_reach66,指的是,负载100%,速度33%,臂展66%
|
||||
|
||||
3. 结果文件命名规则
|
||||
所谓结果文件,就是处理数据的那个 excle 文件,该文件名字的前缀必须是 loadXX_XXXXXXXXX.xlsx,比如:
|
||||
load33_自研_制动性能测试.xlsx
|
||||
load66_自研_制动性能测试.xlsx
|
||||
load100_自研_制动性能测试.xlsx
|
||||
|
||||
!!结果文件可以是没有数据的,也可以是之前有数据的,只要保证第 6 点中的那几个数据准确即可
|
||||
|
||||
4. 数据存储的组织结
|
||||
..../j1/load100_speed33_reach100
|
||||
..../j1/load100_speed66_reach100
|
||||
....
|
||||
..../j1/load100_speed100_reach100
|
||||
..../j1/load100_speed33_reach100/2024_05_16_09_18_52.data
|
||||
..../j1/load100_speed33_reach100/2024_05_16_09_19_52.data
|
||||
..../j1/load100_speed33_reach100/2024_05_16_09_20_52.data
|
||||
|
||||
..../j1/load33_自研_制动性能测试.xlsx
|
||||
..../j1/load66_自研_制动性能测试.xlsx
|
||||
..../j1/load100_自研_制动性能测试.xlsx
|
||||
|
||||
5. 文件的打开与关闭
|
||||
a. 在执行程序之前,需要关闭所有相关 excle 文件
|
||||
b. 在执行程序之中,不允许打开相关 excle 文件
|
||||
c. 在执行程序之后,需要逐个打开结果文件,并保存一次
|
||||
|
||||
6. 参数一致性检查
|
||||
执行程序前,需要确定 configs.xlsx 中设定的减速比/最大角速度/额定电流的值是正确的
|
||||
|
||||
7. 数据准确性检查
|
||||
执行完程序之后,需要对结果文件的数据准确性做核对,通过我自己的数据观察,误差基本在10ms以内,也即10个数据点,误差较大的情况可自行调整
|
||||
|
||||
8. .data 数据顺序
|
||||
.data 文件的第一列和第二列必须分别是速度和电流
|
||||
|
||||
9. 其他
|
||||
程序运行主要的耗时集中在打开,保存和关闭结果文件,第一次打开的时候会比较慢,是因为 excel 在做首次公式的计算,保存关闭之后,再打开会比较快一些,另外,如果在运行出错并重复运行程序的时候无响应,或者出现异常,请打开任务管理器,关闭一切和excel相关的进程,重新运行即可
|
||||
|
||||
|
||||
|
||||
RELEASE CHANGES
|
||||
|
||||
|
||||
已知问题:
|
||||
1. office套件下运行好像有问题,WPS无问题,集中在just_open函数的实现上
|
||||
|
||||
v0.0.1(2024/05/18)
|
||||
Draft
|
||||
|
||||
v0.0.2(2024/05/20)
|
||||
1. 功能模块化,为后面其他功能奠定一个基本的框架
|
||||
2. 使用了多线程提高效率
|
||||
3. 优化了准备工作中的细节
|
||||
4. 运行初始化时自动删除 raw_data_dir 中的 .xlsx 文件
|
||||
5. 优化了输出格式
|
||||
6. 使用 pyinstaller 库进行代码冻结并调试成功
|
||||
|
||||
v0.0.3(2024/05/21)
|
||||
1. just_open函数打开失败的信息中,添加文件名
|
||||
2. 删除global变量,函数全部通过传参实现
|
||||
3. configuration.xlsx配置文件增加AXIS常量,表示那个轴,取值为 j1/j2/j3/j4/j5/j6/j7
|
||||
4. [bugfix] 增加get_threshold_step函数,用来获取在计算row_start时合适的阈值和步长,主要是解决了二轴最差工况下,最大速度是个尖端的问题:
|
||||
a. load100_speed100_reachxxx 二轴 threshold = 50 step = 20
|
||||
b. 其他 threshold = 50 step = 100
|
||||
如上是一个比较保守的设定,因为设定的step比较小,找到点之后要往后延200最好
|
||||
5. 在find_row_start_dp函数中新增一个参数data_file,方便后续调试
|
||||
|
||||
v0.0.4(2024/05/22)
|
||||
1. 重新标定了get_threshold_step函数,让处理更加准确
|
||||
2. 新定义了now_doing_msg函数,实时输出处理信息
|
||||
3. 修改了find_row_start和find_row_start_dp函数,增加的部分相同,处理数据的时候,先判断是否是空值,或者是0,此时可以加快步进
|
||||
4. 修改了just_open函数,不在做重试
|
||||
|
||||
v0.0.5(2024/05/23)
|
||||
1. 完善了函数注释
|
||||
2. 调整了阈值和步长
|
||||
3. 删除了just_open函数,以及对应的win32com库(Thank GOD!终于可以不用这个库了)
|
||||
4. 重写了获取开始点位的代码,直接使用speed来判断,而不用角度,所以find_row_start_dp以及copy_data_to_excel_file函数也被一并删除
|
||||
|
||||
|
||||
v0.x.x(2024/05/xx)
|
||||
1. 修改configuration.xlsx变量顺序,同步调整代码,为了调整多功能框架,aio.py文件将会作为入口程序存在,不实现具体功能
|
||||
2. 功能的实现将由具体的功能脚本实现,aio.py只负责条件调用
|
||||
3. 使用pytinstaller打包多文件为exe可执行程序
|
||||
4. 新增了自动化处理电机电流数据的功能
|
Loading…
x
Reference in New Issue
Block a user