v0.1.6.3(2024/06/18)

1. [current.py] 适配电机电流中速度使用hw_joint_vel_feedback的数据,取消对device_servo_vel_feedback的支持,后续所有涉及到速度相关的数据均已前者为准,现已完成对单轴和场景的适配

> !!WARNING:目前版本的电机电流程序还支持DriverMaster采集的数据处理,等明确后,将不再支持,也即所有的电机电流数据(工业+协作),都是用诊断曲线来采集
This commit is contained in:
gitea 2024-06-18 20:42:48 +08:00
parent 4ba8af842c
commit c3dbb2cff0
5 changed files with 19 additions and 10 deletions

View File

@ -229,3 +229,8 @@ v0.1.6.1(2024/06/16)
v0.1.6.2(2024/06/16)
1. [current.py] 修改了max/avg相关功能中对于返回值的处理逻辑并在输出框以行的形式打印出来
v0.1.6.3(2024/06/18)
1. [current.py] 适配电机电流中速度使用hw_joint_vel_feedback的数据取消对device_servo_vel_feedback的支持后续所有涉及到速度相关的数据均已前者为准现已完成对单轴和场景的适配
> WARNING目前版本的电机电流程序还支持DriverMaster采集的数据处理等明确后将不再支持也即所有的电机电流数据工业+协作),都是用诊断曲线来采集

View File

@ -6,8 +6,8 @@ VSVersionInfo(
ffi=FixedFileInfo(
# filevers and prodvers should be always a tuple with four items: (1, 2, 3, 4)
# Set not needed items to zero 0.
filevers=(0, 1, 6, 2),
prodvers=(0, 1, 6, 2),
filevers=(0, 1, 6, 3),
prodvers=(0, 1, 6, 3),
# Contains a bitmask that specifies the valid bits 'flags'r
mask=0x3f,
# Contains a bitmask that specifies the Boolean attributes of the file.
@ -31,12 +31,12 @@ VSVersionInfo(
'040904b0',
[StringStruct('CompanyName', 'Rokae - https://www.rokae.com/'),
StringStruct('FileDescription', 'All in one automatic toolbox'),
StringStruct('FileVersion', '0.1.6.2 (2024-06-16)'),
StringStruct('FileVersion', '0.1.6.3 (2024-06-18)'),
StringStruct('InternalName', 'AIO.exe'),
StringStruct('LegalCopyright', '© 2024-2024 Manford Fan'),
StringStruct('OriginalFilename', 'AIO.exe'),
StringStruct('ProductName', 'AIO'),
StringStruct('ProductVersion', '0.1.6.2 (2024-06-16)')])
StringStruct('ProductVersion', '0.1.6.3 (2024-06-18)')])
]),
VarFileInfo([VarStruct('Translation', [1033, 1200])])
]

View File

@ -1 +1 @@
0.1.6.2 @ 06/16/2024
0.1.6.3 @ 06/18/2024

View File

@ -72,7 +72,7 @@ class App(customtkinter.CTk):
btns['log']['btn'].configure(command=lambda: self.thread_it(self.func_log_callback))
btns['end']['btn'].configure(command=lambda: self.thread_it(self.func_end_callback))
# create version info
self.label_version = customtkinter.CTkLabel(self.frame_func, justify='left', text="Vers: 0.1.6.2\nDate: 06/16/2024", font=self.my_font, text_color="#4F4F4F")
self.label_version = customtkinter.CTkLabel(self.frame_func, justify='left', text="Vers: 0.1.6.3\nDate: 06/18/2024", font=self.my_font, text_color="#4F4F4F")
self.frame_func.rowconfigure(6, weight=1)
self.label_version.grid(row=6, column=0, padx=20, pady=20, sticky='s')
# =====================================================================

View File

@ -232,10 +232,12 @@ def p_single(wb, single, vel, trq, rpm, w2t):
axis = int(data_file.split('\\')[-1].split('_')[0].removeprefix('j'))
shtname = f"J{axis}"
ws = wb[shtname]
addition = 1
set_option("display.precision", 2)
if data_file.endswith('.data'):
df = read_csv(data_file, sep='\t')
rr = float(wb['统计'].cell(row=2, column=axis+1).value)
addition = 180 / 3.1415926 * 60 / 360 * rr
elif data_file.endswith('.csv'):
df = read_csv(data_file, sep=',', encoding='gbk', header=8)
csv_reader = reader(open(data_file))
@ -249,7 +251,7 @@ def p_single(wb, single, vel, trq, rpm, w2t):
ws["H11"] = cycle
col_names = list(df.columns)
df_1 = df[col_names[vel-1]].multiply(rpm)
df_1 = df[col_names[vel-1]].multiply(rpm*addition)
df_2 = df[col_names[trq-1]].multiply(scale)
df = concat([df_1, df_2], axis=1)
@ -309,10 +311,12 @@ def p_scenario(wb, single, vel, trq, rpm, dur, w2t):
axis = int(data_file.split('\\')[-1].split('_')[0].removeprefix('j'))
shtname = f"J{axis}"
ws = wb[shtname]
addition = 1
set_option("display.precision", 2)
if data_file.endswith('.data'):
df = read_csv(data_file, sep='\t')
rr = float(wb['统计'].cell(row=2, column=axis+1).value)
addition = 180 / 3.1415926 * 60 / 360 * rr
elif data_file.endswith('.csv'):
df = read_csv(data_file, sep=',', encoding='gbk', header=8)
csv_reader = reader(open(data_file))
@ -326,7 +330,7 @@ def p_scenario(wb, single, vel, trq, rpm, dur, w2t):
ws["H11"] = cycle
col_names = list(df.columns)
df_1 = df[col_names[vel-1]].multiply(rpm)
df_1 = df[col_names[vel-1]].multiply(rpm*addition)
df_2 = df[col_names[trq-1]].multiply(scale)
df = concat([df_1, df_2], axis=1)